高效信息检索:使用Cross Encoder进行重排序

引言

在信息检索系统中,提高检索结果的质量至关重要。Cross Encoder是一种有效的重排序机制,可与嵌入技术结合使用,以提升检索效果。这篇文章将介绍如何在向量检索系统中集成Cross Encoder,尤其是如何利用Hugging Face的Cross Encoder模型在SageMaker中实现重排序。

主要内容

向量检索的设置

我们首先使用一个简单的向量检索系统,从文本中提取信息。以下代码展示了如何初始化向量检索,并从文本中检索信息。

# 安装必要的库
#!pip install faiss sentence_transformers

from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter

# 加载和分割文本
documents = TextLoader("path/to/state_of_the_union.txt").load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
texts = text_splitter.split_documents(documents)

# 初始化嵌入模型
embeddingsModel = HuggingFaceEmbeddings(
    model_name="sentence-transformers/msmarco-distilbert-dot-v5"
)

# 设置检索器
retriever = FAISS.from_documents(texts, embeddingsModel).as_retriever(
    search_kwargs={
   "k": 20}
)

# 查询文档
query = "What is the plan for the economy?"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值