引言
在信息检索系统中,提高检索结果的质量至关重要。Cross Encoder是一种有效的重排序机制,可与嵌入技术结合使用,以提升检索效果。这篇文章将介绍如何在向量检索系统中集成Cross Encoder,尤其是如何利用Hugging Face的Cross Encoder模型在SageMaker中实现重排序。
主要内容
向量检索的设置
我们首先使用一个简单的向量检索系统,从文本中提取信息。以下代码展示了如何初始化向量检索,并从文本中检索信息。
# 安装必要的库
#!pip install faiss sentence_transformers
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
# 加载和分割文本
documents = TextLoader("path/to/state_of_the_union.txt").load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
texts = text_splitter.split_documents(documents)
# 初始化嵌入模型
embeddingsModel = HuggingFaceEmbeddings(
model_name="sentence-transformers/msmarco-distilbert-dot-v5"
)
# 设置检索器
retriever = FAISS.from_documents(texts, embeddingsModel).as_retriever(
search_kwargs={
"k": 20}
)
# 查询文档
query = "What is the plan for the economy?"