题意:一个公司要炒掉一些人 然后这些人之间是有上下级关系的 ,也就是说如果上级走人的话 那么他所管辖下的下级也必须走人 即他的子树必须全部走完 走人会有收益或者是损失 然后问炒完之后的最大收益是多少 为了达到这个收益炒掉的最少的人数是多少
解法:前面一问应该是最小权闭合图了 具体的建图就是从原点对所有收益点进行连线 权值为 所能得到的收益
然后把所有亏损点和汇点进行连线 权值为亏损值的相反数 然后根据上下级的关系对于所有点进行连线即可
然后后面一问其实就是求最后求最大权闭合图中的点 然后我们只需要进行原点开始的dfs,能搜到的就是了
注意要减去虚设的原点,还有边权要使用long long
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
#define MAXN 5555
#define MAXM 2222222
struct Edge{
int v,next;
ll cap;
}edge[MAXM];
int head[MAXN];
int pre[MAXN];
int cur[MAXN];
int level[MAXN];
int gap[MAXN];
int NV,NE,n,m,vs,vt;
void Insert(int u,int v,ll cap,ll cc=0){
edge[NE].v=v;edge[NE].cap=cap;
edge[NE].next=head[u];head[u]=NE++;
edge[NE].v=u;edge[NE].cap=cc;
edge[NE].next=head[v];head[v]=NE++;
}
ll SAP(int vs,int vt){
memset(pre,-1,sizeof(pre));
memset(level,0,sizeof(level));
memset(gap,0,sizeof(gap));
for(int i=0;i<=NV;i++)cur[i]=head[i];
int u=pre[vs]=vs;
ll aug=-1,maxflow=0;
gap[0]=NV;
while(level[vs]<NV){
loop:
for(int &i=cur[u];i!=-1;i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap&&level[u]==level[v]+1){
aug==-1?aug=edge[i].cap:aug=min(aug,edge[i].cap);
pre[v]=u;
u=v;
if(v==vt){
maxflow+=aug;
for(u=pre[u];v!=vs;v=u,u=pre[u]){
edge[cur[u]].cap-=aug;
edge[cur[u]^1].cap+=aug;
}
aug=-1;
}
goto loop;
}
}
int minlevel=NV;
for(int i=head[u];i!=-1;i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap&&minlevel>level[v]){
cur[u]=i;
minlevel=level[v];
}
}
if(--gap[level[u]]==0)break;
level[u]=minlevel+1;
gap[level[u]]++;
u=pre[u];
}
return maxflow;
}
int vis[MAXN],co;
void _dfs(int u){
vis[u]=1;
co++;
for(int i=head[u];i!=-1;i=edge[i].next){
if(edge[i].cap>0&&!vis[edge[i].v]){
_dfs(edge[i].v);
}
}
}
int main(){
int _case,u,v,w,flag,t=1,st,ed;
while(~scanf("%d%d",&n,&m)){
vs=0,vt=n+1,NV=n+2,NE=0;
ll ans=0;
memset(head,-1,sizeof(head));
for(int i=1;i<=n;++i){
scanf("%d",&w);
if(w>0){ans+=(ll)w;Insert(vs,i,(ll)w);}
else{
Insert(i,vt,(ll)(-w));
}
}
for(int i=1;i<=m;++i){
scanf("%d%d",&u,&v);
Insert(u,v,(ll)11111111111);
}
co=0;
ans=ans-SAP(vs,vt);
memset(vis,0,sizeof vis);
_dfs(0);
printf("%d %lld\n",co-1,ans);
}
return 0;
}