关于Batch Normalization的另一种理解

本文探讨了Batch Normalization在深度学习中如何影响图像超分辨率和图像生成任务,指出在这些任务中,Batch Norm可能导致训练缓慢和不稳定。尽管在图像分类任务中Batch Norm通常能加速收敛,但在保留图像原始对比度信息的任务中,它可能会起到反作用。作者提出,残差网络中的Batch Norm由于skip connection可以传递对比度信息,因此仍能发挥作用。此外,还分析了Batch Norm在照片风格转移任务中的适用性。
摘要由CSDN通过智能技术生成

Batch Norm可谓深度学习中非常重要的技术,不仅可以使训练更深的网络变容易,加速收敛,还有一定正则化的效果,可以防止模型过拟合。在很多基于CNN的分类任务中,被大量使用。
但我最近在图像超分辨率和图像生成方面做了一些实践,发现在这类任务中,Batch Norm的表现并不好,加入了Batch Norm,反而使得训练速度缓慢,不稳定,甚至最后发散。
以下是我对这一现象的个人看法,并不严格,还需继续检验。

首先,以图像超分辨率来说,网络输出的图像在色彩、对比度、亮度上要求和输入一致,改变的仅仅是分辨率和一些细节,而Batch Norm,对图像来说类似于一种对比度的拉伸,任何图像经过Batch Norm后,其色彩的分布都会被归一化,也就是说,它破坏了图像原本的对比度信息,所以Batch Norm的加入反而影响了网络输出的质量。虽然Batch Norm中的scale和shift参数可以抵消归一化的效果,但这样就增加了训练的难度和时间,还不如直接不用。不过有一类网络结构可以用,那就是残差网络(Residual Net),但也仅仅是在residual block当中使用,比如SRResNet,就是一个用于图像超分辨率的残差网络。为什么这类网络可以使用Batch Norm呢?我个人理解是,因为图像的对比度信息可以通过skip connection直接传递,所以也就不必担心Batch Norm的破坏了。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值