【------人工智能------】
文章平均质量分 79
AI、深度学习、图像处理
ooMelloo
☆人工智能/机器学习/深度学习工程师进击中
☆立志成为数学好编程好业务好的三好青年
☆人必有痴 而后有成
展开
-
深度学习中端到端的理解
非端到端相对于深度学习,传统机器学习的流程往往由多个独立的模块组成,比如在一个典型的自然语言处理(Natural Language Processing)问题中,包括分词、词性标注、句法分析、语义分析等多个独立步骤,每个步骤是一个独立的任务,其结果的好坏会影响到下一步骤,从而影响整个训练的结果,这是非端到端的。端到端深度学习模型在训练过程中,从输入端(输入数据)到输出端会得到一个预测结果,与真实结果相比较会得到一个误差,这个误差会在模型中的每一层传递(反向传播),每一层的表示都会根据这个误差来做原创 2021-03-12 15:40:05 · 905 阅读 · 0 评论 -
人工智能目标检测模型总结(三)——yolov1模型(2)
前言当我们谈起计算机视觉时,首先想到的就是图像分类,没错,图像分类是计算机视觉最基本的任务之一,但是在图像分类的基础上,还有更复杂和有意思的任务,如目标检测,物体定位,图像分割等,见图1所示。其中目标检测是一件比较实际的且具有挑战性的计算机视觉任务,其可以看成图像分类与定位的结合,给定一张图片,目标检测系统要能够识别出图片的目标并给出其位置,由于图片中目标数是不定的,且要给出目标的精确位置,目标检测相比分类任务更复杂。目标检测的一个实际应用场景就是无人驾驶,如果能够在无人车上装载一...原创 2021-01-30 17:13:27 · 1492 阅读 · 0 评论 -
人工智能目标检测总结(五)——深入理解one-stage目标检测模型
本文翻译自One-shot object detection,原作者保留版权。作为计算机视觉领域的一项重要任务,目标检测是要找到一张图片里的感兴趣物体:这比图像分类任务更高级,因为分类只需要告诉图像中主要物体是什么,然而目标检测要找到多个物体,不仅要分类,而且要定位出它们在图像中的位置。目标检测模型不仅要预测出各个物体的边界框(bounding boxes),还要给出每个物体的分类概率。通常情况下目标检测要预测许多边界框。每个边界框还需要一个置信度(confidence score),代表其..原创 2021-01-29 16:35:16 · 3242 阅读 · 2 评论 -
人工智能目标检测模型(四)——ResNet
ResNet在2015年被提出,在ImageNet比赛classification任务上获得第一名,因为它“简单与实用”并存,之后很多方法都建立在ResNet50或者ResNet101的基础上完成的,检测,分割,识别等领域都纷纷使用ResNet,Alpha zero也使用了ResNet,所以可见ResNet确实很好用。下面我们从实用的角度去看看ResNet。1.ResNet意义随着网络的加深,出现了训练集准确率下降的现象,我们可以确定这不是由于Overfit过拟合造成的(过拟合的情况训练集应该准确原创 2021-01-29 14:55:11 · 7413 阅读 · 0 评论 -
人工智能目标检测模型总结(三)——yolov1模型(1)
从五个方面解读CVPR2016 目标检测论文YOLO: Unified, Real-Time Object Detection创新 核心思想 效果 改进 实践1. 创新YOLO将物体检测作为回归问题求解。基于一个单独的end-to-end网络,完成从原始图像的输入到物体位置和类别的输出。从网络设计上,YOLO与rcnn、fast rcnn及faster rcnn的区别如下:[1] YOLO训练和检测均是在一个单独网络中进行。YOLO没有显示地求取region proposal的过.原创 2021-01-28 17:40:00 · 905 阅读 · 0 评论 -
人工智能目标检测模型总结(一)——R-CNN、Fast R-CNN、Faster R-CNN
目标检测是人工智能的一个重要应用,就是在图片中要将里面的物体识别出来,并标出物体的位置,一般需要经过两个步骤:1、分类,识别物体是什么2、定位,找出物体在哪里image除了对单个物体进行检测,还要能支持对多个物体进行检测,如下图所示:image这个问题并不是那么容易解决,由于物体的尺寸变化范围很大、摆放角度多变、姿态不定,而且物体有很多种类别,可以在图片中出现多种物体、出现在任意位置。因此,目标检测是一个比较复杂的问题。最直接的方法便是...原创 2021-01-27 10:06:43 · 2683 阅读 · 0 评论 -
人工智能目标检测模型总结(二)——目标检测two-stage模型汇总
two-stage模型:R-CNN、Fast R-CNN、Faster R-CNN三个模型都是Ross Girshick教授分别在2014、2015年提出来的,在PASCAL VOC 2007数据集上取得不错的进展。目标检测方法分类两个阶段:分类 定位一、原始方法操作流程:如下图(要识别一只熊),用各种大小的框在图片中进行反复截取,输入到CNN中识别计算得分,最后确定出目标类别和位置。缺点:效率低,太耗时。二、R-CNN2014年,区域卷积神经网络(Region C.原创 2021-01-27 14:33:22 · 1597 阅读 · 0 评论 -
安装torchvision时,报错error: command ‘aarch64-linux-gnu-gcc‘ failed with exit status 1
jetson nano安装torchvision时报错进行编译安装:cd torchvisionpython3 setup.py install解决:1.如果是python2请先使用sudo pip install pyzmq==17.0.0,python3使用sudo pip3 install pyzmq==17.0.0事实证明,无效!!!2.fatal error: libavcodec/avcodec.h: No such file or directoryFFmpeg原创 2021-01-20 00:10:31 · 4446 阅读 · 12 评论 -
12大深度学习开源框架(caffe,tensorflow,pytorch,mxnet等)汇总详解
这是一篇总结文,给大家来捋清楚12大深度学习开源框架的快速入门,这是有三AI的GitHub项目,欢迎大家star/fork。https://github.com/longpeng2008/yousan.ai1 概述1.1 开源框架总览现如今开源生态非常完善,深度学习相关的开源框架众多,光是为人熟知的就有caffe,tensorflow,pytorch/caffe2,keras,mxnet,paddldpaddle,theano,cntk,deeplearning4j,matconvnet转载 2021-01-19 18:30:03 · 20400 阅读 · 1 评论 -
Jetson nano安装Pytorch详解
一、官网下载安装包NVIDIA官网:https://forums.developer.nvidia.com/t/pytorch-for-jetson-version-1-7-0-now-available/72048可以根据个人需求下载不同版本的Pytorch安装包,建议科学上网。# 安装指令sudo pip3 install torch-1.7.0-cp36-cp36m-linux_aarch64.whl二、验证torch>>> import .原创 2021-01-15 18:00:31 · 13071 阅读 · 8 评论 -
TensorFlow总结(2020版)
前言 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程。TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。 TensorFlow可被用于语音识别或图像识别等多项机器深度学习领域,对2011年开发的深度学习基础架构DistBelief进行了各方面的改进...原创 2020-09-13 23:32:51 · 446 阅读 · 0 评论 -
图像识别中——目标分割、目标识别、目标检测和目标跟踪的区别
计算机视觉旨在识别和理解图像/视频中的内容,包含四大基本任务:分类(图a)、定位、检测(图b)、语义分割(图c)、和实例分割(图d)。这四个任务需要对图像的理解逐步深入。给定一张输入图像,图像分类任务旨在判断该图像所属类别。目标定位是在图像分类的基础上,进一步判断图像中的目标具体在图像的什么位置,通常是以包围盒的(bounding box)形式。在目标定位中,通常只有一个或固定数目的目标。目标检测更一般化,其图像中出现的目标种类和数目都不定。语义分割是目标检测更进阶的任务,目标检测只原创 2020-09-13 23:07:46 · 3116 阅读 · 0 评论