------机器学习------
ooMelloo
☆人工智能/机器学习/深度学习工程师进击中
☆立志成为数学好编程好业务好的三好青年
☆人必有痴 而后有成
展开
-
机器学习之监督学习(五)——集成学习(随机森林 Random Forest)
随机森林RF原创 2020-05-07 22:47:31 · 417 阅读 · 0 评论 -
机器学习之监督学习(五)——集成学习(Boosting)
Boosting原创 2020-05-07 22:46:38 · 341 阅读 · 0 评论 -
机器学习之数据转换(七)——降维
降维度量学习原创 2020-04-27 00:05:58 · 718 阅读 · 0 评论 -
机器学习之非监督学习(六)——聚类(K-Means)
聚类原创 2020-04-27 00:04:39 · 1753 阅读 · 0 评论 -
机器学习之监督学习(五)——集成学习
集成学习原创 2020-04-27 00:03:22 · 263 阅读 · 0 评论 -
机器学习之监督学习(四)——贝叶斯分类器
贝叶斯分类器原创 2020-04-27 00:02:49 · 498 阅读 · 0 评论 -
机器学习之监督学习(三)——支持向量机(SVM)
支持向量机原创 2020-04-27 00:02:15 · 388 阅读 · 0 评论 -
机器学习之监督学习(二)——神经网络
神经网络原创 2020-04-27 00:01:23 · 443 阅读 · 0 评论 -
机器学习之监督学习(一)——决策树
待更~原创 2020-04-27 00:00:23 · 240 阅读 · 0 评论 -
机器学习Scikit-Learn模块详解
一、Sklearn简介Scikit-learn(sklearn)是机器学习中常用的第三方模块算法库,对常用的机器学习方法进行了封装,包括回归(Regression)、降维(Dimensionality Reduction)、分类(Classfication)、聚类(Clustering)等方法。当我们面临机器学习问题时,便可根据下图来选择相应的方法。Sklearn具有以下特点:简单高效的...原创 2020-04-26 23:38:13 · 2317 阅读 · 0 评论 -
10种经典机器学习算法——Python版
klearn python APILinearRegressionfrom sklearn.linear_model import LinearRegression # 线性回归 #module = LinearRegression()module.fit(x, y)module.score(x, y)module.predict(test)LogisticRe...转载 2019-09-05 13:46:46 · 222 阅读 · 0 评论 -
三维空间坐标系变换——旋转矩阵
空间中三维坐标变换一般由三种方式实现,第一种是旋转矩阵和旋转向量;第二种是欧拉角;第三种是四元数。这里先介绍旋转矩阵(旋转向量)与欧拉角实现三维空间坐标变换的方法以及两者之间的关系。 这里以常见的世界坐标系与相机坐标系间的变换为例。一、首先介绍从相机坐标系转换到世界坐标系,也就是比较通用的body到世界坐标系间的转换。 那么旋转的欧拉角按从世界坐标系转换到相机坐...转载 2018-11-14 18:38:29 · 22290 阅读 · 0 评论 -
机器学习十大经典算法
本文介绍了机器学习新手需要了解的 10 大算法,包括线性回归、Logistic 回归、朴素贝叶斯、K 近邻算法等。 在机器学习中,有一种叫做「没有免费的午餐」的定理。简而言之,它指出没有任何一种算法对所有问题都有效,在监督学习(即预测建模)中尤其如此。例如,你不能说神经网络总是比决策树好,反之亦然。有很多因素在起作用,例如数据集的大小和结构。因此,你应该针对具体问题尝试多种不同...原创 2018-12-20 15:31:11 · 1517 阅读 · 0 评论 -
概率论概念及机器学习中样本相似性度量之马氏距离
均值、标准差、方差:样本均值描述的是集合的中间点、平均值、均值的信息是有限的,有时候甚至是完全没有参考意义的,比如各统计局最喜欢发布的平均工资、年收入等等,只有个文字游戏而已。标准差描述的是样本集合中的各个样本点到均值的距离的平均值。以集合[0,8,12,20]和集合[8,9,11,12]为例,两者的均值都是10,但显然后都较为集中,故其标准差小一些。所以标准差描述的是集合中样品分布的聚合...原创 2019-01-08 15:50:39 · 573 阅读 · 0 评论 -
机器学习:分类算法SVM(支持向量机)
支持向量机(Support Vector Machine ,SVM)的主要思想是:建立一个最优决策超平面,使得该平面两侧距离该平面最近的两类样本之间的距离最大化,从而对分类问题提供良好的泛化能力。对于一个多维的样本集,系统随机产生一个超平面并不断移动,对样本进行分类,直到训练样本中属于不同类别的样本点正好位于该超平面的两侧,满足该条件的超平面可能有很多个,SVM正式在保证分类精度的同时,寻找到这样...原创 2019-01-08 15:55:57 · 1439 阅读 · 0 评论 -
MachineLearning:UFLDL学习笔记 ---- 主成分分析与白化
主成分分析(PCA)是用来提升无监督特征学习速度的数据降维算法。看过下文大致可以知道,PCA本质是对角化协方差矩阵,目的是让维度之间的相关性最小(降噪),保留下来的维度能量最大(去冗余),PCA在图像数据的降维上很实用,因为图像数据相邻元素的相关性是很高的。为了方便解释,我们以二维数据降一维为例(实际应用可能需要把数据从256降到50):需要注意的是,两个特征值经过了预处理,其均值为...原创 2019-03-13 22:18:52 · 413 阅读 · 0 评论 -
MachineLearning Exercise 7 : K-means Clustering and Principle Component Analysis
findClosestCentroids.mm = size(X,1);for i=1:m [value index] = min(sum((repmat(X(i,:),K,1)-centroids).^2,2)); idx(i) = index;endcomputeCentroids.mtemp = [X idx];// pdf说能向量化实现更高效,本人对...原创 2019-03-13 22:26:22 · 364 阅读 · 0 评论 -
机器学习——卷积神经网络计算
卷积运算与相关运算在计算机视觉领域,卷积核、滤波器通常为较小尺寸的矩阵,比如3×33×3、5×55×5等,数字图像是相对较大尺寸的2维(多维)矩阵(张量),图像卷积运算与相关运算的关系如下图所示(图片来自链接),其中FF为滤波器,XX为图像,OO为结果。相关是将滤波器在图像上滑动,对应位置相乘求和;卷积则先将滤波器旋转180度(行列均对称翻转),然后使用旋转后的滤波器进行相关运算。两者...原创 2019-05-21 14:58:57 · 1091 阅读 · 0 评论 -
机器学习算法思想简单梳理
前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的不断发展,相信这方面的人才需求也会越来越大。 纵观IT行业的招聘岗位,机器学习之类的岗位还是挺少的,国...原创 2018-11-05 23:01:48 · 315 阅读 · 1 评论