模型部署架构

官网:Triton Inference Server | NVIDIA Developer

Simplifying and Scaling Inference Serving with NVIDIA Triton 2.3 | NVIDIA Technical Blog

模型训练只是DeepLearning的一小部分,如《Hidden Technical Debt in Machine Learning Systems》NIPS2015机器学习系统的技术债
书中所说。

现有几种搭建框架

Python:TF+Flask+Funicorn+Nginx
FrameWork:TF serving,TorchServe,ONNX Runtime
Intel:OpenVINO,mms,NVNN,QNNPACK(FB的)
NVIDIA:TensorRT Inference Server(Triton),DeepStream

主要说现阶段比较主流的

TensorRT
硬件T4的GPU(也可嵌入端等NVIDIA设备)
软件TensorRT (Triton)2020年TensorRT改名为Triton

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值