知识表示方法
1.概述
1.1 知识分类
- 陈述性知识:用于描述领域内有关概念、事实、事务的属性和状态等。
1.太阳从东方升起
2.一年有春夏秋冬四个季节 - 过程性知识:用于指出如何处理与领域相关的信息,以求得问题的解。例如:
1.菜谱中的炒菜步骤
2.如果信道畅通,请发绿色信号 - 元知识:关于知识的知识,包括怎样使用规则、解释规则、校验规则、解释程序结构等知识。
1.2 知识表示
知识表示可看成是一组事务的约定,以把人类知识表示成机器能处理的数据结构。对知识进行表示的过程就是把知识编码成某种数据结构的过程。
知识表示方法分为:
- 陈述性知识表示:将知识表示与知识的运用分开处理,在知识表示时,并不涉及如何运用知识的问题,是一种静态的描述方法。
- 过程性知识表示:将知识表示与知识的运用相结合,知识寓于程序中,是一种动态的描述方法。
1.3 知识表示准则
- 表示知识的范围是否广泛
- 是否适于推理
- 是否适于加入启发信息
- 是否适于计算机处理
- 是否有高效的求解算法
- 陈述性表示还是过程性表示
- 能够表示不精确知识
- 能够在同一层次上和不同层次上模块化
- 知识和元知识能够用统一的形式表示
- 表示方法是否自然
2. 一阶谓词逻辑表示法
一阶谓词逻辑以树立逻辑为基础,是到目前为止能够表达人类思维和推理的一种最精确的形式语言。其表现方式和人类自然语言也非常接近,容易为计算机理解和操作,并支持精确推理。
基本概念
- 命题:具有真假意义的陈述句。
- 逻辑联结词:用于将多个原子命题组合成复合命题。(包括否定、合取、析取、蕴含、等价联结词)
- 个体词:领域内可以独立存在的具体或抽象的客体。
- 在谓词逻辑中,个体可以是常量也可以是变量(变元)
1.个体常量:表示具体的或特定的个体
2.个体变量:表示抽象的或泛指的个体
3.个体域(论域):个体变量的取值范围,可以是有限集合,也可以是无穷集合。 - 谓词:用来刻画个体性质以及个体之间相互关系的此。
eg:命题:x是有理数。其中x是个体变量,“……是有理数”是谓词,几维Rational,命题符号化为Rational(x)。 - n元谓词:含有n个个体符号的谓词 P ( x 1 , x 2 , . . . , x n ) P(x_1,x_2,...,x_n) P(x1,x2,...,xn)
- 函数:又称函词,是从若干个个体到某个个体的映射。
eg:Sun(1,2)表示1与2的加和。 - 谓词与函数的区别:
1.谓词实现的是从个体域中的个体到真或假的映射,而函数实现的是从个体域中的一个个体到另一个个体的映射,无真值可言。
2.在谓词逻辑中,函数本身不能单独使用它必须嵌入到谓词中。 - 量词:是表示个体数量属性的词。包括全称量词和存在量词。
谓词逻辑表示法特性
- 优点:
1.精确性:可以较准确地表示知识并支持精确推理
2.通用性:拥有通用的逻辑演算方法和推理规则
3.自然性:是一种接近于人类自然语言的形式语言系统。
4.模块化:各条知识相对独立,它们之间不直接发生联系,便于知识的添加、删除和修改。 - 缺点:
1.表示能力差:智能表示确定性知识,不能表示非确定性知识、过程性知识和启发式知识。
2.管理困难:缺乏知识的组织原则,知识库管理困难
3.效率低:把推理演算与知识含义截然分开,往往使推理过