知识图谱学习笔记(三)——知识表示方法

知识表示方法

1.概述

1.1 知识分类

  • 陈述性知识:用于描述领域内有关概念、事实、事务的属性和状态等。
    1.太阳从东方升起
    2.一年有春夏秋冬四个季节
  • 过程性知识:用于指出如何处理与领域相关的信息,以求得问题的解。例如:
    1.菜谱中的炒菜步骤
    2.如果信道畅通,请发绿色信号
  • 元知识:关于知识的知识,包括怎样使用规则、解释规则、校验规则、解释程序结构等知识。

1.2 知识表示

知识表示可看成是一组事务的约定,以把人类知识表示成机器能处理的数据结构。对知识进行表示的过程就是把知识编码成某种数据结构的过程。

知识表示方法分为:

  1. 陈述性知识表示:将知识表示与知识的运用分开处理,在知识表示时,并不涉及如何运用知识的问题,是一种静态的描述方法。
  2. 过程性知识表示:将知识表示与知识的运用相结合,知识寓于程序中,是一种动态的描述方法。

1.3 知识表示准则

  • 表示知识的范围是否广泛
  • 是否适于推理
  • 是否适于加入启发信息
  • 是否适于计算机处理
  • 是否有高效的求解算法
  • 陈述性表示还是过程性表示
  • 能够表示不精确知识
  • 能够在同一层次上和不同层次上模块化
  • 知识和元知识能够用统一的形式表示
  • 表示方法是否自然

2. 一阶谓词逻辑表示法

一阶谓词逻辑以树立逻辑为基础,是到目前为止能够表达人类思维和推理的一种最精确的形式语言。其表现方式和人类自然语言也非常接近,容易为计算机理解和操作,并支持精确推理。

基本概念

  • 命题:具有真假意义的陈述句。
  • 逻辑联结词:用于将多个原子命题组合成复合命题。(包括否定、合取、析取、蕴含、等价联结词)
  • 个体词:领域内可以独立存在的具体或抽象的客体。
  • 在谓词逻辑中,个体可以是常量也可以是变量(变元)
    1.个体常量:表示具体的或特定的个体
    2.个体变量:表示抽象的或泛指的个体
    3.个体域(论域):个体变量的取值范围,可以是有限集合,也可以是无穷集合。
  • 谓词:用来刻画个体性质以及个体之间相互关系的此。
    eg:命题:x是有理数。其中x是个体变量,“……是有理数”是谓词,几维Rational,命题符号化为Rational(x)。
  • n元谓词:含有n个个体符号的谓词 P ( x 1 , x 2 , . . . , x n ) P(x_1,x_2,...,x_n) P(x1,x2,...,xn)
  • 函数:又称函词,是从若干个个体到某个个体的映射。
    eg:Sun(1,2)表示1与2的加和。
  • 谓词与函数的区别:
    1.谓词实现的是从个体域中的个体到真或假的映射,而函数实现的是从个体域中的一个个体到另一个个体的映射,无真值可言。
    2.在谓词逻辑中,函数本身不能单独使用它必须嵌入到谓词中。
  • 量词:是表示个体数量属性的词。包括全称量词和存在量词。

谓词逻辑表示法特性

  • 优点:
    1.精确性:可以较准确地表示知识并支持精确推理
    2.通用性:拥有通用的逻辑演算方法和推理规则
    3.自然性:是一种接近于人类自然语言的形式语言系统。
    4.模块化:各条知识相对独立,它们之间不直接发生联系,便于知识的添加、删除和修改。
  • 缺点:
    1.表示能力差:智能表示确定性知识,不能表示非确定性知识、过程性知识和启发式知识。
    2.管理困难:缺乏知识的组织原则,知识库管理困难
    3.效率低:把推理演算与知识含义截然分开,往往使推理过
### 构建个人技术知识图谱的最佳实践 构建个人技术知识图谱是一个复杂的过程,它涉及到多个核心技术和步骤。以下是关于如何实现这一目标的具体说明。 #### 1. 明确需求与范围 在开始之前,需明确要构建的知识图谱的目标和覆盖范围。例如,如果专注于编程技能,则可以考虑将重点放在特定的语言(如Python、Java)、框架(如Spring Boot、Django)及其相关生态系统上[^1]。 #### 2. 数据收集与准备 数据源的选择直接影响到知识图谱的质量。对于个人技术知识图谱而言,可以从以下几个方面获取数据: - **公开资源**:利用在线文档、教程和技术博客等内容。 - **私人资料**:整理自己的笔记、项目经验和学习心得。 通过这些途径提取结构化或非结构化的信息用于后续处理[^4]。 #### 3. 实体识别与关系抽取 此阶段主要任务是从上述采集的数据集中发现并标注重要概念即“实体”,同时确定它们之间存在的逻辑关联。“实体”可能代表某种算法名称或者某个软件库,“关系”则描述两者间的相互作用比如依赖关系或者是继承关系等。鉴于实际操作中的挑战,在某些情况下采用基于规则的方法可能会取得更好的效果相比复杂的机器学习模型[^2]。 #### 4. 使用合适的工具支持开发过程 目前市场上存在多种能够辅助完成整个生命周期管理工作的平台解决方案可供选择。例如华为云提供了专门针对此类应用场景优化过的图形界面友好型产品——知识图谱服务(Knowledge Graph Service),允许用户借助简单的拖放动作快速搭建起属于自己的定制版本体系架构[^3]。 #### 5. 验证和完善 最后一步是对初步形成的成果进行全面测试评估其准确性,并不断迭代改进直至满足预期标准为止。 ```python # 示例代码展示如何简单模拟两个节点间的关系建立 class Node: def __init__(self, name): self.name = name def create_relationship(node_a:Node , node_b:Node ): print(f"{node_a.name} is related to {node_b.name}") java=Node('Java') spring_boot=Node('Spring Boot') create_relationship(java,spring_boot) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Aidanmomo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值