知识图谱学习笔记(三)—— 实体识别与链接

本文详细探讨了知识图谱中的实体识别和链接任务,包括定义、目标、研究意义,以及传统统计模型、深度学习和文本挖掘等方法的应用。实体识别涉及命名实体识别和实体边界识别、分类,实体链接则关注实体消歧和空提及检测。当前挑战主要包括实体歧义性、资源缺乏和实体开放性问题。

1. 定义、目标和研究意义

实体是文本中承载信息的重要语言单位,一段文本的语义可以表述为其包含的实体及这些实体相互之间的关联和交互。实体识别也就成为了文本意义理解的基础。例如,“26 日下午,一架叙利亚空军 L-39 教练机在哈马省被 HTS 使用的肩携式防空导弹击落”中的信息可以通过其包含的时间实体“26 号下午”,机构实体“叙利亚空军”、“HTS”,地点实体“哈马省”和武器实体“L-39 教练机”、“肩携式防空导弹”有效描述。实体也是知识图谱的核心单元,一个知识图谱通常是一个以实体为节点的巨大知识网络,包括实体、实体属性以及实体之间的关系。例如,一个医学领域知识图谱的核心单元是医学领域的实体,如疾病、症状、药物、医院、医生等。

命名实体识别是指识别文本中的命名性实体,并将其划分到指定类别的任务。常用实体类别包括人名、地名、机构名、日期等。

实体链接主要解决实体名的歧义性和多样性问题,是指将文本中实体名指向其所代表的真实世界实体的任务,也通常被称为实体消歧。例如,给一句话“苹果发布了最新产品 iPhone X”,实体链接系统需要将文本中的“苹果”与其真实世界所指的“苹果公司”进行对应。

2.研究内容与挑战

实体识别与链接处理各种非结构化/半结构化的输入(如文本、新闻网页、商品页面、微博、论坛页面等),使用多种技术(统计方法、深度学习方法、知识挖掘方法),提取各种类型的实体(如人名、地名、商品、药物等),并将这些信息与现有知识图谱进行集成(实体链接)。以下分别介绍具体研究内容。

实体识别
命名实体识别的目的是识别文本中指定类别的实体,主要包括人名、地名、机构名、专有名词等的任务。例如,识别“2016 年 6 月 20 日,骑士队在奥克兰击败勇士队获得 NBA 冠军”这句中的地名(奥克兰)、时间(2016 年 6月 20 日)、球队(骑士队、勇士队)和机构(NBA)。命名实体识别系统通常包含两个部分:实体

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值