矩阵知识点-求导

这几天由于用到矩阵求导相关的知识,但是自己没有学过矩阵论(研究生选课的时候,导师没有让选),于是百度了下,觉得完整的相关资料不多,还好发现了下面的这篇博客,给我了很大的帮助!

 

仔细分析了下博客中的内容,其实矩阵求导也是挺好理解的(估计是我有较好的MATLAB使用基础吧),下面看帖吧,哈哈!!

 

矩阵求导 属于 矩阵计算,应该查找 Matrix Calculus 的文献:

http://www.psi.toronto.edu/matrix/intro.html#Intro

http://www.psi.toronto.edu/matrix/calculus.html

http://www.stanford.edu/~dattorro/matrixcalc.pdf

http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/IFEM.AppD.d/IFEM.AppD.pdf

http://www4.ncsu.edu/~pfackler/MatCalc.pdf

http://center.uvt.nl/staff/magnus/wip12.pdf

 

在网上看到有人贴了如下求导公式:

Y = A * X --> DY/DX = A'
Y = X * A --> DY/DX = A
Y = A' * X * B --> DY/DX = A * B'
Y = A' * X' * B --> DY/DX = B * A'

 

于是把以前学过的矩阵求导部分整理一下:

1. 矩阵Y对标量x求导:

   相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了

   Y = [y(ij)] --> dY/dx = [dy(ji)/dx]

 

2. 标量y对列向量X求导:

   注意与上面不同,这次括号内是求偏导,不转置,对N×1向量求导后还是N×1向量

   y = f(x1,x2,..,xn) --> dy/dX = (Dy/Dx1,Dy/Dx2,..,Dy/Dxn)'

 

3. 行向量Y'对列向量X求导:

   注意1×M向量对N×1向量求导后是N×M矩阵。

   将Y的每一列对X求偏导,将各列构成一个矩阵。

   重要结论:

   dX'/dX = I

   d(AX)'/dX = A'

 

4. 列向量Y对行向量X’求导:

   转化为行向量Y’对列向量X的导数,然后转置。

   注意M×1向量对1×N向量求导结果为M×N矩阵。

   dY/dX' = (dY'/dX)'

 

5. 向量积对列向量X求导运算法则:

   注意与标量求导有点不同。

   d(UV')/dX = (dU/dX)V' + U(dV'/dX)

   d(U'V)/dX = (dU'/dX)V + (dV'/dX)U'

   重要结论:

   d(X'A)/dX = (dX'/dX)A + (dA/dX)X' = IA + 0X' = A

   d(AX)/dX' = (d(X'A')/dX)' = (A')' = A

   d(X'AX)/dX = (dX'/dX)AX + (d(AX)'/dX)X = AX + A'X

 

6. 矩阵Y对列向量X求导:

   将Y对X的每一个分量求偏导,构成一个超向量。

   注意该向量的每一个元素都是一个矩阵。

 

7. 矩阵积对列向量求导法则:

   d(uV)/dX = (du/dX)V + u(dV/dX)

   d(UV)/dX = (dU/dX)V + U(dV/dX)

   重要结论:

   d(X'A)/dX = (dX'/dX)A + X'(dA/dX) = IA + X'0 = A

 

8. 标量y对矩阵X的导数:

   类似标量y对列向量X的导数,

   把y对每个X的元素求偏导,不用转置。

   dy/dX = [ Dy/Dx(ij) ]

   重要结论:

   y = U'XV = ΣΣu(i)x(ij)v(j) 于是 dy/dX = [u(i)v(j)] = UV'

   y = U'X'XU 则 dy/dX = 2XUU'

   y = (XU-V)'(XU-V) 则 dy/dX = d(U'X'XU - 2V'XU + V'V)/dX = 2XUU' - 2VU' + 0 = 2(XU-V)U'

 

9. 矩阵Y对矩阵X的导数:

   将Y的每个元素对X求导,然后排在一起形成超级矩阵。

 

10.乘积的导数

d(f*g)/dx=(df'/dx)g+(dg/dx)f'

结论

d(x'Ax)=(d(x'')/dx)Ax+(d(Ax)/dx)(x'')=Ax+A'x   (注意:''是表示两次转置)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值