图像的HOG特征

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ailishuai/article/details/52101353

HOG

方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。
Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主。
可借鉴博客 http://blog.csdn.net/liulina603/article/details/8291093

PHOG特征

分层梯度方向直方图(Pyramid Histogram of Oriented Gradients,PHOG) 是一种描述空间形状的特征向量,在不同层次上统计边缘图像的梯度方向直方图分布情况,具有较强的抗噪性能和一定的抗旋转能力,目前主要应用于图像检索等模式识别工作中,并已取得稳定、良好的效果。但受其分层规则的制约,缺乏一定的尺度自适应性。
可参考http://blog.csdn.net/yihaizhiyan/article/details/6790342

python中skimage库中有hog特征的提取函数

fd, hog_image = hog(image, orientations=8, pixels_per_cell=(4, 4),
cells_per_block=(1, 1),transform_sqrt=None, visualise=True)
输入:
image:图像矩阵
orientations:Number of orientation bins.
pixels_per_cell:Size (in pixels) of a cell
cells_per_block:Number of cells in each block.
transform_sqrt:是否进行gamma校正
visualise:生成可视化图片
输出:
fd:一维化的HOG特征
hog_image: 生成的可视化图形

没有更多推荐了,返回首页