离散数学基本概念-电大同步上课进度更新

本文介绍了集合论的基础概念,包括基数、归纳法、递归指定、外延性定理和集合的运算。此外,还详细阐述了命题逻辑,涉及命题、真值、联结词、等价和蕴含等。进一步探讨了推理理论,包括有效性和矛盾式的判断,以及谓词逻辑的基本概念。最后,提到了量词、自由变元和约束变元的概念,以及合式公式的解释和有效性。
摘要由CSDN通过智能技术生成

集合论基础

基数:集合的元素个数
归纳法:可用归纳法表示集合,要求-基础,归纳,有限性
递归指定:知道通项公式an,集合为a1 a2...
外延性定理:元素相等,集合相等
集合相等:元素相等
集合个数:共n个元素,取m个个数为cmn,取n个个数为2的n次方
幂集:集合的所有不同子集
补集:上面有一杠
差集:A-B,属于A不属于B
对称差集:A⊕B,A-B并B-A
等势:两个集合一一对应
可数集合:和自然数集一一对应
阿列夫零:可数集合元素个数
不可数集合:和(0,1)一一对应
阿列夫:不可数集合元素个数

 

命题逻辑

命题:具有明确真值的陈述句
真值:真或假
不是命题:悖论和非陈述句
原子命题:不能拆的命题
复合命题:可以拆的命题
联结词:语文的关联词
否定:乛非;
否定的优先级最高
合取:∧并且
析取:V或者
蕴含:→若则

  • Q→P:只有P,才Q
  • 乛P→乛Q:除非P,否则Q
  • P的真值-Q的真值-P→Q的真值
  • 1-0-0
  • 1-1-1
  • 0-0/1-1

等价:←→当且仅当;同1,异0

一致:真值表中存在一行的复合命题全为1

命题变元(变量):值 1(真)或 0(假)的变元

命题公式(合式公式):将命题变元用联结词或圆括号按一定逻辑关系联结起来的符号串

赋值:值 1(真)或 0(假)

成真赋值:值 1(真)

成假赋值:值0(假)

真值函数:F(P,Q,R)

公式的一个解释(I):给原子命题赋真值;n个命题变元,2^n个解释

真值表:由各个命题变元,和命题公式的真假组成的表格(按二进制来写)

重言式或永真式:真值表都为1

矛盾式或永假式:真值表都为0

可满足式:真值表为1,也可为0

公式等价:任意解释,G和H真值相同,即G<-->H为永真式

自反:G=G

对称:G=H H=G

传递:G=H H=I G=I

证明G_{1}G_{2}逻辑等价:G_{1}<-->G_{2}真值表为1

等值式:A\leftrightarrow BA\leftrightarrow BA \leftrightarrow B为重言式

24个基本公式:最重要(G->H)=(乛G\veeH)

代入定理:G(P,Q)永真,G{}'(H,S)永真      H(P,Q),S(P,Q)

替换定理:G_{1}是G的子公式,H_{1}是和G_{1}相等的任意命题,G中凡是出现G_{1}的地方替换H_{1},替换后为H,则G=H

开括号:括号外面和括号里面的运算符号一致可以消去括号,不一致可以分配律消去括号

 

公式的标准型-范式

文字:命题变元及其否定

析取式(子句):有限个文字取V,儿子多,析出蛋白质多

合取式(短语):有限个文字取\Lambda,合二为一少,短

互补对:P和非P

析取范式:有限个短语析取

合取范式:有限个子句合取

没有括号:即是析取也是合取

极小项:每个短语其本身和否定不同时存在且二者之一出现一次,并各个短语出现次序一致

极大项:每个子句其本身和否定不同时存在且二者之一出现一次,并各个子句出现次序一致

等价定理:所有命题都有与之等价的析取范式,合取范式,主析取范式,主合取范式

P,Q对应的极小值真值表:每个解释对应一个取值为真都的极小项;没有等价(所有解释对应的真值相同)的两个极小项;从左上到右下为1

编码m:二进制下标,十进制下标,从0开始,顺序为     ┐P\Lambda┐Q           ┐P\LambdaQ         P\Lambda┐Q      P\Lambda

P,Q对应的极大值真值表:每个解释对应一个取值为0都的极大项;没有等价(所有解释对应的真值相同)的两个极大项;从左下到右上为0

编码M:二进制下标,十进制下标,从0开始,顺序为     ┐PV┐Q           ┐PVQ         PV┐Q      PVQ 

极小\Lambda极小=0        极大V极大=1

V全部极小=永真公式    \Lambda全部极大=永假公式

主析取范式:有限个极小项短语析取,无极小为空

主合取范式:有限个极大项子句合取,无极大为空

求主范式:

1.公式转换法:通过24个公式将其变为满足要求的式子

缺少命题:Q=(PV┐P)\LambdaQ    Q=(P\Lambda┐P)VQ  ,再用分配律

多余命题:PV┐P   P\Lambda┐P来消去

2.真值表法:

主析取范式:写出真值表和m和1的排列方向从左上到右下为1,不看真值表为0的一行,其它析取

主合取范式:写出真值表和M和0的排列方向从左下到右上为0,不看真值表为1的一行,其它合取

3.互补规则:

转换成编码后下标互补,为0-2^n-1(n为命题变元个数)

主析取范式为mVmVm....

主合取范式为M\LambdaM\LambdaM...

概念:描述问题的句子

判断:对概念的肯定与否定的判断

推理:从一个或多个前提推出结论的思维过程

推理有效:它的结论是它前提的合乎逻辑的结果,前提都为真,那么所得的结论也必然为真

蕴涵,逻辑结果:设G,H是公式,对任意解释I,如果I满足G,那么I满足H,则称H是G的逻辑结果(或称G蕴涵H),记为G\RightarrowH,此时称G为前提,H为结论

永真定理:设G,H是公式,HG的逻辑结果当且仅当G→H为永真公式

有效的:G1∧G2∧…∧Gn\Rightarrow

一组前提:Г={G1,G2,…,Gn}

永真定理推广:公式H是前提集合Г={G1,G2,…,Gn}的逻辑结果当且仅当G1∧G2∧…∧Gn→H为永真公式。

\Rightarrow”与“→”的不同:“→”仅是一般的蕴涵联结词,G→H的结果仍是一个公式,而“\Rightarrow”却描述了两个公式G,H之间的一种逻辑蕴涵关系,G \Rightarrow H的“结果”,是非命题公式;用计算机来判断G Þ H是办不到的。然而计算机却可“计算”公式G→H是否为永真公式

判断有效结论的常用方法 :G1∧G2∧…∧Gn→H为永真公式,真值表技术、演绎法和间接证明方法

真值表技术:取出所有G中的所有命题变元P,列包含P和G和H真值表,要求H为假时,至少一个G为假

推理定律:设G,H,I,J是任意的命题公式,则有:(小可推大)

G∧H\RightarrowG      (简化规则)

G∧H\RightarrowH

G\RightarrowG∨H      (添加规则)

H\RightarrowG∨H

┐G\RightarrowG→H         =┐G∨H

H\RightarrowG→H           =┐G∨H

┐(G→H)\RightarrowG      ┐(G→H)=G∧ ┐H

┐(G→H)\Rightarrow┐H    ┐(G→H)=G∧ ┐H

G,H\RightarrowG∧H

GG∨H\RightarrowH  (选言三段论)
┐G,G  H\RightarrowH 

GG→H\RightarrowH  (分离规则)

HG→H\Rightarrow┐G  (否定后件式)

G→HH→I\RightarrowG→I  (假言三段论)

G∨HG→IH→I\RightarrowI  (二难推论)

演绎法:是从前提(假设)出发,依据公认的推理规则和推理定律,推导出一个结论来

推理规则

  • 规则P(称为前提引用规则):在推导的过程中,可随时引入前提集合中的任意一个前提;
  • 规则T(逻辑结果引用规则):在推导的过程中,可以随时引入公式S,该公式S是由其前的一个或多个公式推导出来的逻辑结果。
  • 规则CP(附加前提规则):如果能从给定的前提集合Г与公式P推导出S,则能从此前提集合Г推导出P→S。 P→(Q→R)=(P∧Q)→R,P\Rightarrow(Q→R)等价于(P∧Q)\Rightarrow

例子:设前提Г={P∨Q,P\leftrightarrowR,Q→S},G=S∨R。证明Г\RightarrowG

例子:设Г={P→(Q→S),┐R∨P,Q},G=R→S。证明:Г\RightarrowG。

间接证明法(反证法) :P\RightarrowQ等价于┐Q\Rightarrow┐P,因此,为了间接地证明P\RightarrowQ,可以假设Q为假(┐Q),然后证明P为假(┐P)。

一致的,相容的:假设G1,G2,…,Gn是一组命题公式,P1,P2,…,Pn是出现在中的一切命题变元,若有解释I使G1∧G2∧…∧Gn取值为“真”,则称公式G1,G2,…,Gn是一致的,或者说是相容的。

矛盾式:G1∧G2∧…∧Gn是矛盾式当且仅当G1∧G2∧…∧Gn\RightarrowR∧┐R,其中,R可为任意公式,R∧┐R为一矛盾式

将结论的否定加入到前提集合中构成一组新的前提,然后证明这组新的前提集合是不相容的,即蕴涵一个矛盾式。G1,G2,…,Gn,┐H\Rightarrow R∧┐R

 

第四章 谓词逻辑

为什么要有谓词逻辑?

命题逻辑能够解决的问题是有局限性的。只能进行命题间关系的推理,无法解决与命题的结构和成分有关的推理问题。

谓词逻辑的目录

谓词逻辑中的基本概念

谓词的翻译原理

谓词的合式公式

谓词的标准型-范式

谓词逻辑的推理理论

谓词逻辑中的基本概念

目录

重点掌握

1 谓词逻辑符号化及真值

2 谓词公式的有效性和基本等价公式

3 掌握谓词逻辑的推理规则和公理

一般掌握

1 谓词公式的解释和真值

2 自由变元和约束变元

了解

前束范式与SKOLEM范式

谓词逻辑中的基本概念与表示

命题是具有真假意义的陈述句,从语法上分析,一个陈述句由主语和谓语两部分组成。

个体词与谓词

在原子命题中,可以独立存在的客体(句子中的主语、宾语等),称为个体词(Individual)。而用以刻划客体的性质或客体之间的关系即是谓词(Predicate)

1.表示具体的或特定的个体词称为个体常量(Individual Constant),一般个体词常量用带或不带下标的小写英文字母a, b, ca1, b1, c1,等表示;

2.表示抽象的或泛指的个体词称为个体变量(Individual Variable),一般用带或不带下标的小写英文字母x, y, z, , x1, y1, z1, 等表示。

个体域

  • 个体词的取值范围称为个体域(论域) (Individual Field),常用D表示;

  • 宇宙间的所有个体域聚集在一起所构成的个体域称为全总个体域(Universal Individual Field)

n元谓词

设D为非空的个体域,定义在Dn上取值于{0,1}上的n元函数,称为n元命题函数或n元谓词

记为P(x1, x2, …, xn)。此时,个体变量x1, x2, …, xn的定义域都为D,P(x1, x2, …, xn)的值域为{0, 1}

结论

  • 谓词中个体词的顺序是十分重要的,不能随意变更。如命题F(b, c),但命题F(c, b)
  • 一元谓词用以描述某一个个体的某种特性,而n元谓词则用以描述n个个体之间的关系
  • 0元谓词(不含个体词的)实际上就是一般的命题;
  • 具体命题的谓词表示形式S(a)有真值n元命题函数S(x)却没有真值
  • 一个n元谓词不是一个命题,但n元谓词中的个体变元都用个体域中具体的个体取代后,就成为一个命题,有真值

 

量词:任意,存在

(1)对于全称量词(\forallx),刻划其对应个体域的特性谓词作为蕴涵式之前件加入。

所有的老虎都要吃人; 

解:设P(x):x会吃人,U(x):x是老虎,

则有:(\forallx)(U(x)→P(x))

(2)对于存在量词(\existsx),刻划其对应个体域的特性谓词作为合取式之合取项加入。

有一些人登上过月球

解:设S(x):x登上过月球,R(x):x是人,

则有:(\existsx)(S(x)∧R(x))

 

谓词的翻译原理

谓词的语言翻译

     (\forallx)G(x)=G(x0)∧G(x1)∧...∧G(xn)

     (\existsx)G(x)=G(x0)∨G(x1)∨...∨G(xn)

符号化下面一组语句

所有蜂鸟都五彩斑斓;没有大鸟以蜜为生;不以蜜为生的鸟都色彩单调;蜂鸟都是小鸟畅。

:设P(x):x是蜂鸟;Q(x):x是大鸟;R(x)x是以蜜为生的鸟;S(x) x五彩斑斓。假定所有鸟的集合为论域,则上述语句可符号化为:

 (\forallx)(P(x)→S(x)); (\existsx) (Q(x)∧R(x))

 (\forallx)(R(x)→S(x)) (\forallx)(P(x)→Q(x))

谓词的合式公式

1常量符号:用带或不带下标的小写英文字母a, b, c, , a1, b1, c1, 来表示。当个体域名称集合D给出时,它可以是D中的某个元素

2变量符号:用带或不带下标的小写英文字母x, y, z, ..., x1, y1, z1,...来表示。当个体域名称集合D给出时,它可以是D中的任意元素

3函数符号:用带或不带下标的小写英文字母f, g, h, ..., f1, g1, h1, ...来表示。当个体域名称集合D给出时,n元函数符号f(x1, x2, , xn)可以是Dn→D的任意一个函数;

4谓词符号:用带或不带下标的大写英文字母P, Q, R,..., P1, Q1, R1...来表示。当个体域名称集合D给出时,n元谓词符号P(x1, x2, , xn)可以是Dn→{01}的任意一个谓词。

(1)任意的常量符号或任意的变量符号是项;

(2)若f(x1, x2, …, xn)是n 元函数符号,t1,t2,…,tn是项,则f(t1, t2, …, tn)是项;

(3)仅由有限次使用(1),(2)产生的符号串才是项。

若P(x1,x2,…,xn)是n 元谓词,t1,t2,…,tn是项,则称P(t1,t2,…,tn)为原子谓词公式,简称原子公式

量词辖域

   (1)若量词后有括号,则括号内的子公式就是该量词的辖域;

   (2)若量词后无括号,则与量词邻接的子公式为该量词的辖域。

合式公式

1原子公式是合式公式;

2)若GH是合式公式,则(G)(H)(G∨H)(G∧H)(G→H)(G«H)也是合式公式;

3)若G是合式公式,x是个体变量,则 (\forallx)G、(\existsx)G 也是合式公式;

4)仅仅由(1)-(3)产生的表达式才是合式公式。

例如

自由变元和约束变元

给定一个合适公式G,若变元x出现在使用变元的量词的辖域之内,则称变元x的出现为约束出现,此时的变元x称为约束变元

x的出现不是约束出现,则称它为自由出现,此时的变元x 称为自由变元

两个规则

约束变元的改名规则:对公式的一个子公式施行

自由变元的代入规则:对整个公式施行

例子

1)将公式(\forallx)(P(x)→Q(x, y))∧R(x, y)中的约束变元x进行改名;

(\forallz)(P(z)→Q(z, y))∧R(x, y)

2)将公式(\forallx)(P(x)→Q(x, y))∧R(x, y)中的自由变元y进行代入。

  (\forallx)(P(x)→Q(x, z))∧R(x, z)

闭式

G是任意一个公式,若G中无自由出现的个体变元,则称G封闭的合适公式,简称闭式闭式一定是命题。

例如(\forallx)(P(x)→(\existsy)R(x, y))是一个闭式。

谓词合式公式的解释

谓词逻辑中公式G 的每一个解释I(explanation)由如下四部分组成:

 (1非空的个体域集合D

 (2G 中的每个常量符号,指定D 中的某个特定的元素;

 (3G 中的每个n 函数符号,指定DnD中的某个特定的函数;

 (4G 中的每个n 谓词符号,指定Dn到{0, 1}中的某个特定的谓词。

有效公式所有的解释I下都取值为

矛盾公式所有的解释I下都取值为

可满足公式至少有一种解释I使得G取值为

 

谓词演算中的有效公式

 

 

谓词的标准型-范式

谓词逻辑的推理理论

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to be continue2021.3.24

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值