集合论基础
基数:集合的元素个数
归纳法:可用归纳法表示集合,要求-基础,归纳,有限性
递归指定:知道通项公式an,集合为a1 a2...
外延性定理:元素相等,集合相等
集合相等:元素相等
集合个数:共n个元素,取m个个数为cmn,取n个个数为2的n次方
幂集:集合的所有不同子集
补集:上面有一杠
差集:A-B,属于A不属于B
对称差集:A⊕B,A-B并B-A
等势:两个集合一一对应
可数集合:和自然数集一一对应
阿列夫零:可数集合元素个数
不可数集合:和(0,1)一一对应
阿列夫:不可数集合元素个数
命题逻辑
命题:具有明确真值的陈述句
真值:真或假
不是命题:悖论和非陈述句
原子命题:不能拆的命题
复合命题:可以拆的命题
联结词:语文的关联词
否定:乛非;否定的优先级最高
合取:∧并且
析取:V或者
蕴含:→若则
- Q→P:只有P,才Q
- 乛P→乛Q:除非P,否则Q
- P的真值-Q的真值-P→Q的真值
- 1-0-0
- 1-1-1
- 0-0/1-1
等价:←→当且仅当;同1,异0
一致:真值表中存在一行的复合命题全为1
命题变元(变量):值 1(真)或 0(假)的变元
命题公式(合式公式):将命题变元用联结词或圆括号按一定逻辑关系联结起来的符号串
赋值:值 1(真)或 0(假)
成真赋值:值 1(真)
成假赋值:值0(假)
真值函数:F(P,Q,R)
公式的一个解释(I):给原子命题赋真值;n个命题变元,个解释
真值表:由各个命题变元,和命题公式的真假组成的表格(按二进制来写)
重言式或永真式:真值表都为1
矛盾式或永假式:真值表都为0
可满足式:真值表为1,也可为0
公式等价:任意解释,G和H真值相同,即G<-->H为永真式
自反:G=G
对称:G=H H=G
传递:G=H H=I G=I
证明和逻辑等价:<-->真值表为1
等值式:为重言式
24个基本公式:最重要(G->H)=(乛GH)
代入定理:G(P,Q)永真,永真 H(P,Q),S(P,Q)
替换定理:是G的子公式,是和相等的任意命题,G中凡是出现的地方替换,替换后为H,则G=H
开括号:括号外面和括号里面的运算符号一致可以消去括号,不一致可以分配律消去括号
公式的标准型-范式
文字:命题变元及其否定
析取式(子句):有限个文字取V,儿子多,析出蛋白质多
合取式(短语):有限个文字取,合二为一少,短
互补对:P和非P
析取范式:有限个短语析取
合取范式:有限个子句合取
没有括号:即是析取也是合取
极小项:每个短语其本身和否定不同时存在且二者之一出现一次,并各个短语出现次序一致
极大项:每个子句其本身和否定不同时存在且二者之一出现一次,并各个子句出现次序一致
等价定理:所有命题都有与之等价的析取范式,合取范式,主析取范式,主合取范式
P,Q对应的极小值真值表:每个解释对应一个取值为真都的极小项;没有等价(所有解释对应的真值相同)的两个极小项;从左上到右下为1
编码m:二进制下标,十进制下标,从0开始,顺序为 ┐P┐Q ┐PQ P┐Q PQ
P,Q对应的极大值真值表:每个解释对应一个取值为0都的极大项;没有等价(所有解释对应的真值相同)的两个极大项;从左下到右上为0
编码M:二进制下标,十进制下标,从0开始,顺序为 ┐PV┐Q ┐PVQ PV┐Q PVQ
极小极小=0 极大V极大=1
V全部极小=永真公式 全部极大=永假公式
主析取范式:有限个极小项短语析取,无极小为空
主合取范式:有限个极大项子句合取,无极大为空
求主范式:
1.公式转换法:通过24个公式将其变为满足要求的式子
缺少命题:Q=(PV┐P)Q Q=(P┐P)VQ ,再用分配律
多余命题:PV┐P P┐P来消去
2.真值表法:
主析取范式:写出真值表和m和1的排列方向从左上到右下为1,不看真值表为0的一行,其它析取
主合取范式:写出真值表和M和0的排列方向从左下到右上为0,不看真值表为1的一行,其它合取
3.互补规则:
转换成编码后下标互补,为0-(n为命题变元个数)
主析取范式为mVmVm....
主合取范式为MMM...
概念:描述问题的句子
判断:对概念的肯定与否定的判断
推理:从一个或多个前提推出结论的思维过程
推理有效:它的结论是它前提的合乎逻辑的结果,前提都为真,那么所得的结论也必然为真
蕴涵,逻辑结果:设G,H是公式,对任意解释I,如果I满足G,那么I满足H,则称H是G的逻辑结果(或称G蕴涵H),记为GH,此时称G为前提,H为结论
永真定理:设G,H是公式,H是G的逻辑结果当且仅当G→H为永真公式
有效的:G1∧G2∧…∧GnH
一组前提:Г={G1,G2,…,Gn}
永真定理推广:公式H是前提集合Г={G1,G2,…,Gn}的逻辑结果当且仅当G1∧G2∧…∧Gn→H为永真公式。
“”与“→”的不同:“→”仅是一般的蕴涵联结词,G→H的结果仍是一个公式,而“”却描述了两个公式G,H之间的一种逻辑蕴涵关系,G H的“结果”,是非命题公式;用计算机来判断G Þ H是办不到的。然而计算机却可“计算”公式G→H是否为永真公式
判断有效结论的常用方法 :G1∧G2∧…∧Gn→H为永真公式,真值表技术、演绎法和间接证明方法
真值表技术:取出所有G中的所有命题变元P,列包含P和G和H真值表,要求H为假时,至少一个G为假
推理定律:设G,H,I,J是任意的命题公式,则有:(小可推大)
G∧HG (简化规则)
G∧HH
GG∨H (添加规则)
HG∨H
┐GG→H =┐G∨H
HG→H =┐G∨H
┐(G→H)G ┐(G→H)=G∧ ┐H
┐(G→H)┐H ┐(G→H)=G∧ ┐H
G,HG∧H
┐G,G∨HH (选言三段论)
┐G,G HH
G,G→HH (分离规则)
┐H,G→H┐G (否定后件式)
G→H,H→IG→I (假言三段论)
G∨H,G→I,H→II (二难推论)
演绎法:是从前提(假设)出发,依据公认的推理规则和推理定律,推导出一个结论来
推理规则
- ①规则P(称为前提引用规则):在推导的过程中,可随时引入前提集合中的任意一个前提;
- ②规则T(逻辑结果引用规则):在推导的过程中,可以随时引入公式S,该公式S是由其前的一个或多个公式推导出来的逻辑结果。
- ③规则CP(附加前提规则):如果能从给定的前提集合Г与公式P推导出S,则能从此前提集合Г推导出P→S。 P→(Q→R)=(P∧Q)→R,P(Q→R)等价于(P∧Q)R
例子:设前提Г={P∨Q,PR,Q→S},G=S∨R。证明ГG
例子:设Г={P→(Q→S),┐R∨P,Q},G=R→S。证明:ГG。
间接证明法(反证法) :PQ等价于┐Q┐P,因此,为了间接地证明PQ,可以假设Q为假(┐Q),然后证明P为假(┐P)。
一致的,相容的:假设G1,G2,…,Gn是一组命题公式,P1,P2,…,Pn是出现在中的一切命题变元,若有解释I使G1∧G2∧…∧Gn取值为“真”,则称公式G1,G2,…,Gn是一致的,或者说是相容的。
矛盾式:G1∧G2∧…∧Gn是矛盾式当且仅当G1∧G2∧…∧GnR∧┐R,其中,R可为任意公式,R∧┐R为一矛盾式
将结论的否定加入到前提集合中构成一组新的前提,然后证明这组新的前提集合是不相容的,即蕴涵一个矛盾式。G1,G2,…,Gn,┐H R∧┐R
第四章 谓词逻辑
为什么要有谓词逻辑?
命题逻辑能够解决的问题是有局限性的。只能进行命题间关系的推理,无法解决与命题的结构和成分有关的推理问题。
谓词逻辑的目录
谓词逻辑中的基本概念
谓词的翻译原理
谓词的合式公式
谓词的标准型-范式
谓词逻辑的推理理论
谓词逻辑中的基本概念
目录
重点掌握
1 谓词逻辑符号化及真值
2 谓词公式的有效性和基本等价公式
3 掌握谓词逻辑的推理规则和公理
一般掌握
1 谓词公式的解释和真值
2 自由变元和约束变元
了解
前束范式与SKOLEM范式
谓词逻辑中的基本概念与表示
命题是具有真假意义的陈述句,从语法上分析,一个陈述句由主语和谓语两部分组成。
个体词与谓词
在原子命题中,可以独立存在的客体(句子中的主语、宾语等),称为个体词(Individual)。而用以刻划客体的性质或客体之间的关系即是谓词(Predicate)。
1.表示具体的或特定的个体词称为个体常量(Individual Constant),一般个体词常量用带或不带下标的小写英文字母a, b, c,…,a1, b1, c1,…等表示;
2.表示抽象的或泛指的个体词称为个体变量(Individual Variable),一般用带或不带下标的小写英文字母x, y, z, …, x1, y1, z1, …等表示。
个体域
-
个体词的取值范围称为个体域(或论域) (Individual Field),常用D表示;
-
宇宙间的所有个体域聚集在一起所构成的个体域称为全总个体域(Universal Individual Field)。
n元谓词
设D为非空的个体域,定义在Dn上取值于{0,1}上的n元函数,称为n元命题函数或n元谓词
记为P(x1, x2, …, xn)。此时,个体变量x1, x2, …, xn的定义域都为D,P(x1, x2, …, xn)的值域为{0, 1}
结论
- 谓词中个体词的顺序是十分重要的,不能随意变更。如命题F(b, c)为“真”,但命题F(c, b)为“假”;
- 一元谓词用以描述某一个个体的某种特性,而n元谓词则用以描述n个个体之间的关系。
- 0元谓词(不含个体词的)实际上就是一般的命题;
- 具体命题的谓词表示形式S(a)有真值和n元命题函数S(x)却没有真值
- 一个n元谓词不是一个命题,但将n元谓词中的个体变元都用个体域中具体的个体取代后,就成为一个命题,有真值
量词:任意,存在
(1)对于全称量词(x),刻划其对应个体域的特性谓词作为蕴涵式之前件加入。
所有的老虎都要吃人;
解:设P(x):x会吃人,U(x):x是老虎,
则有:(x)(U(x)→P(x))
(2)对于存在量词(x),刻划其对应个体域的特性谓词作为合取式之合取项加入。
有一些人登上过月球
解:设S(x):x登上过月球,R(x):x是人,
则有:(x)(S(x)∧R(x))
谓词的翻译原理
谓词的语言翻译
(x)G(x)=G(x0)∧G(x1)∧...∧G(xn)
(x)G(x)=G(x0)∨G(x1)∨...∨G(xn)
符号化下面一组语句
所有蜂鸟都五彩斑斓;没有大鸟以蜜为生;不以蜜为生的鸟都色彩单调;蜂鸟都是小鸟畅。
解:设P(x):x是蜂鸟;Q(x):x是大鸟;R(x):x是以蜜为生的鸟;S(x): x五彩斑斓。假定所有鸟的集合为论域,则上述语句可符号化为:
(x)(P(x)→S(x)); (x) (Q(x)∧R(x));
(x)(┐R(x)→ ┐S(x)); (x)(P(x)→ ┐Q(x))
谓词的合式公式
(1)常量符号:用带或不带下标的小写英文字母a, b, c, …, a1, b1, c1, …来表示。当个体域名称集合D给出时,它可以是D中的某个元素;
(2)变量符号:用带或不带下标的小写英文字母x, y, z, ..., x1, y1, z1,...来表示。当个体域名称集合D给出时,它可以是D中的任意元素;
(3)函数符号:用带或不带下标的小写英文字母f, g, h, ..., f1, g1, h1, ...来表示。当个体域名称集合D给出时,n元函数符号f(x1, x2, …, xn)可以是Dn→D的任意一个函数;
(4)谓词符号:用带或不带下标的大写英文字母P, Q, R,..., P1, Q1, R1...来表示。当个体域名称集合D给出时,n元谓词符号P(x1, x2, …, xn)可以是Dn→{0,1}的任意一个谓词。
项
(1)任意的常量符号或任意的变量符号是项;
(2)若f(x1, x2, …, xn)是n 元函数符号,t1,t2,…,tn是项,则f(t1, t2, …, tn)是项;
(3)仅由有限次使用(1),(2)产生的符号串才是项。
若P(x1,x2,…,xn)是n 元谓词,t1,t2,…,tn是项,则称P(t1,t2,…,tn)为原子谓词公式,简称原子公式。
量词辖域
(1)若量词后有括号,则括号内的子公式就是该量词的辖域;
(2)若量词后无括号,则与量词邻接的子公式为该量词的辖域。
合式公式
(1)原子公式是合式公式;
(2)若G,H是合式公式,则(┐G)、(┐H)、(G∨H)、(G∧H)、(G→H)、(G«H)也是合式公式;
(3)若G是合式公式,x是个体变量,则 (x)G、(x)G 也是合式公式;
(4)仅仅由(1)-(3)产生的表达式才是合式公式。
例如
自由变元和约束变元
给定一个合适公式G,若变元x出现在使用变元的量词的辖域之内,则称变元x的出现为约束出现,此时的变元x称为约束变元
若x的出现不是约束出现,则称它为自由出现,此时的变元x 称为自由变元
两个规则
约束变元的改名规则:对公式的一个子公式施行
自由变元的代入规则:对整个公式施行
例子
(1)将公式(x)(P(x)→Q(x, y))∧R(x, y)中的约束变元x进行改名;
(z)(P(z)→Q(z, y))∧R(x, y)
(2)将公式(x)(P(x)→Q(x, y))∧R(x, y)中的自由变元y进行代入。
(x)(P(x)→Q(x, z))∧R(x, z)
闭式
设G是任意一个公式,若G中无自由出现的个体变元,则称G为封闭的合适公式,简称闭式。闭式一定是命题。
例如(x)(P(x)→(y)R(x, y))是一个闭式。
谓词合式公式的解释
谓词逻辑中公式G 的每一个解释I(explanation)由如下四部分组成:
(1)非空的个体域集合D ;
(2)G 中的每个常量符号,指定D 中的某个特定的元素;
(3)G 中的每个n 元函数符号,指定Dn到D中的某个特定的函数;
(4)G 中的每个n 元谓词符号,指定Dn到{0, 1}中的某个特定的谓词。
有效公式,所有的解释I下都取值为“真”
矛盾公式,所有的解释I下都取值为“假”
可满足公式,至少有一种解释I使得G取值为“真”
谓词演算中的有效公式
谓词的标准型-范式
谓词逻辑的推理理论
to be continue2021.3.24