CV类任务如何自定义数据
利用PaddleHub迁移CV类任务使用自定义数据时,用户需要自己切分数据集,将数据集且分为训练集、验证集和测试集。
数据准备
需要三个文本文件来记录对应的图片路径和标签,此外还需要一个标签文件用于记录标签的名称。
├─data: 数据目录
├─train_list.txt:训练集数据列表
├─test_list.txt:测试集数据列表
├─validate_list.txt:验证集数据列表
├─label_list.txt:标签列表
└─……
训练/验证/测试集的数据列表文件的格式如下,列与列之间以空格键分隔。
图片1路径 图片1标签
图片2路径 图片2标签
...
label_list.txt的格式如下
分类1名称
分类2名称
...
示例: 以DogCat数据集为示例,train_list.txt/test_list.txt/validate_list.txt内容如下示例
cat/3270.jpg 0
cat/646.jpg 0
dog/12488.jpg 1
label_list.txt内容如下:
cat
dog
自定义数据加载
加载图像类自定义数据集,用户仅需要继承基类BaseCVDatast,修改数据集存放地址即可。具体使用如下:
NOTE:
- 数据集文件编码格式建议为utf8格式。
- dataset_dir为数据集实际路径,需要填写全路径,以下示例以/test/data为例。
- 训练/验证/测试集的数据列表文件中的图片路径需要相对于dataset_dir的相对路径,例如图片的实际位置为/test/data/dog/dog1.jpg。base_path为/test/data,则文件中填写的路径应该为dog/dog1.jpg。
- 如果您还有预测数据(没有文本类别),可以将预测数据存放在predict_list.txt文件,文件格式和train_list.txt类似。去掉label一列即可
- 如果您的数据集类别较少,可以不用定义label_list.txt,可以选择定义label_list=["数据集所有类别"]。
from paddlehub.dataset.base_cv_dataset import BaseCVDataset
class DemoDataset(BaseCVDataset):
def __init__(self):
# 数据集存放位置
self.dataset_dir = "/test/data"
super(DemoDataset, self).__init__(
base_path=self.dataset_dir,
train_list_file="train_list.txt",
validate_list_file="validate_list.txt",
test_list_file="test_list.txt",
predict_file="predict_list.txt",
label_list_file="label_list.txt",
# label_list=["数据集所有类别"]
)
dataset = DemoDataset()
以青春有你的项目任务为例:
一、任务简介
图像分类是计算机视觉的重要领域,它的目标是将图像分类到预定义的标签。近期,许多研究者提出很多不同种类的神经网络,并且极大的提升了分类算法的性能。本文以自己创建的数据集:青春有你2中选手识别为例子,介绍如何使用PaddleHub进行图像分类任务。
#CPU环境启动请务必执行该指令
%set_env CPU_NUM=1
#安装paddlehub
!pip install paddlehub==1.6.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
二、任务实践
Step1、基础工作
加载数据文件
导入python包
# !unzip -o data.zip -d ./dataset/data.zip
!unzip -o /home/aistudio/dataset/data.zip
import paddlehub as hub
Step2、加载预训练模型
接下来我们要在PaddleHub中选择合适的预训练模型来Finetune,由于是图像分类任务,因此我们使用经典的ResNet-50作为预训练模型。PaddleHub提供了丰富的图像分类预训练模型,包括了最新的神经网络架构搜索类的PNASNet,我们推荐您尝试不同的预训练模型来获得更好的性能。
module = hub.Module(name="mobilenet_v3_large_imagenet_ssld")
Step3、数据准备
接着需要加载图片数据集。我们使用自定义的数据进行体验,请查看适配自定义数据
from paddlehub.dataset.base_cv_dataset import BaseCVDataset
class DemoDataset(BaseCVDataset):
def __init__(self):
# 数据集存放位置
self.dataset_dir = "data"
super(DemoDataset, self).__init__(
base_path=self.dataset_dir,
train_list_file="train_list.txt",
validate_list_file="validate_list.txt",
test_list_file="test_list.txt",
label_list_file="label_list.txt",
)
dataset = DemoDataset()