2022吴恩达机器学习(Deep learning)课程对应笔记12:梯度下降3

2022吴恩达机器学习(Deep learning)课程对应笔记12

梯度下降3

更新时间:2023/03/20
在这里插入图片描述

概述

下面是具体实现梯度下降算法。
在这里插入图片描述

w 和 b w和b wb的更新过程如下:
w = w − α ∂ ∂ w J ( w , b ) w=w-\alpha\frac{\partial}{\partial w}J(w,b) w=wαwJ(w,b)
b = b − α ∂ ∂ b J ( w , b ) b=b-\alpha\frac{\partial}{\partial b}J(w,b) b=bαbJ(w,b)

  • 其中 α \alpha α是学习率,我们要同时更新 w 和 b w和b wb来是模型不断下降。

同时更新 w 和 b w和b wb的计算过程如下:
t e m p _ w = w − α ∂ ∂ w J ( w , b ) w = t e m p _ w temp\_w=w-\alpha\frac{\partial}{\partial w}J(w,b)\\ w=temp\_w temp_w=wαwJ(w,b)w=temp_w
t e m p _ b = b − α ∂ ∂ b J ( w , b ) b = t e m p _ b temp\_b=b-\alpha\frac{\partial}{\partial b}J(w,b)\\ b=temp\_b temp_b=bαbJ(w,b)b=temp_b

重复以上步骤更新 w 和 b w和b wb 直到收敛。
在这里插入图片描述

下面来关注一下这个梯度更新的过程具体细节是怎么收敛到 m i n J min J minJ的。 ∂ ∂ w J ( w ) \frac{\partial}{\partial w}J(w) wJ(w)表示的是曲线上某点的切线斜率。

  • 当初始的 w w w选择为上图上部分所示的位置时,斜率是正数,所以有: w = w − α ⋅ ( p o s i t i v e   n u m b e r ) w = w-\alpha\cdot(positive\ number) w=wα(positive number),注意学习率始终为正数,所以更新后的 w w w会比原始的 w w w更小,对应图上的X轴坐标, w w w会左移,同时 J ( w ) J(w) J(w)也会减小。
  • 当初始的 w w w选择为上图下部分所示的位置时,斜率是正数负数,所以有: w = w − α ⋅ ( n e g a t i v e   n u m b e r ) w = w-\alpha\cdot(negative\ number) w=wα(negative number),注意学习率始终为正数,所以更新后的 w w w会比原始的 w w w更更大,对应图上的X轴坐标, w w w会右移,同时 J ( w ) J(w) J(w)也会减小。
  • 上面这个例子说明了 w w w的初始值选择很重要
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值