PyTorch入门:04.PyTorch 图像分类器

你已经了解了如何定义神经网络,计算损失值和网络里权重的更新。

现在你也许会想应该怎么处理数据?

通常来说,当你处理图像,文本,语音或者视频数据时,你可以使用标准 python 包将数据加载成 numpy 数组格式,然后将这个数组转换成 torch.*Tensor

  • 对于图像,可以用 Pillow,OpenCV
  • 对于语音,可以用 scipy,librosa
  • 对于文本,可以直接用 Python 或 Cython 基础数据加载模块,或者用 NLTK 和 SpaCy

特别是对于视觉,我们已经创建了一个叫做 totchvision 的包,该包含有支持加载类似Imagenet,CIFAR10,MNIST 等公共数据集的数据加载模块 torchvision.datasets 和支持加载图像数据数据转换模块 torch.utils.data.DataLoader。

这提供了极大的便利,并且避免了编写“样板代码”。

对于本教程,我们将使用CIFAR10数据集,它包含十个类别:‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’。CIFAR-10 中的图像尺寸为33232,也就是RGB的3层颜色通道,每层通道内的尺寸为32*32。

训练一个图像分类器

我们将按次序的做如下几步:

  1. 使用torchvision加载并且归一化CIFAR10的训练和测试数据集
  2. 定义一个卷积神经网络
  3. 定义一个损失函数
  4. 在训练样本数据上训练网络
  5. 在测试样本数据上测试网络

加载并归一化 CIFAR10 使用 torchvision ,用它来加载 CIFAR10 数据非常简单。

import torch
import torchvision
import torchvision.transforms as transforms

torchvision 数据集的输出是范围在[0,1]之间的 PILImage,我们将他们转换成归一化范围为[-1,1]之间的张量 Tensors。

transform = transforms.Compose(
[transforms.ToTensor(),
 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
 download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
 shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
 download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
 shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

输出:

Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz
Files already downloaded and verified

让我们来展示其中的一些训练图片。

import matplotlib.pyplot as plt
import numpy as np
# functions to show an image
def imshow(img):
 img = img / 2 + 0.5 # unnormalize
 npimg = img.numpy()
 plt.imshow(np.transpose(npimg, (1, 2, 0)))
 plt.show()
# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()
# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))

输出:

cat plane ship frog

定义一个卷积神经网络 在这之前先 从神经网络章节 复制神经网络,并修改它为3通道的图片(在此之前它被定义为1通道)

import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
 self.conv1 = nn.Conv2d(3, 6, 5)
 self.pool = nn.MaxPool2d(2, 2)
 self.conv2 = nn.Conv2d(6, 16, 5)
 self.fc1 = nn.Linear(16 * 5 * 5, 120)
 self.fc2 = nn.Linear(120, 84)
 self.fc3 = nn.Linear(84, 10)
def forward(self, x):
 x = self.pool(F.relu(self.conv1(x)))
 x = self.pool(F.relu(self.conv2(x)))
 x = x.view(-1, 16 * 5 * 5)
 x = F.relu(self.fc1(x))
 x = F.relu(self.fc2(x))
 x = self.fc3(x)
return x
net = Net()

定义一个损失函数和优化器 让我们使用分类交叉熵Cross-Entropy 作损失函数,动量SGD做优化器。

import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

训练网络 这里事情开始变得有趣,我们只需要在数据迭代器上循环传给网络和优化器 输入就可以。

for epoch in range(2): # loop over the dataset multiple times
 running_loss = 0.0
for i, data in enumerate(trainloader, 0):
 # get the inputs
 inputs, labels = data
 # zero the parameter gradients
 optimizer.zero_grad()
 # forward + backward + optimize
 outputs = net(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()
 # print statistics
 running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
 running_loss = 0.0
print('Finished Training')

输出:

[1, 2000] loss: 2.187
[1, 4000] loss: 1.852
[1, 6000] loss: 1.672
[1, 8000] loss: 1.566
[1, 10000] loss: 1.490
[1, 12000] loss: 1.461
[2, 2000] loss: 1.389
[2, 4000] loss: 1.364
[2, 6000] loss: 1.343
[2, 8000] loss: 1.318
[2, 10000] loss: 1.282
[2, 12000] loss: 1.286
Finished Training

在测试集上测试网络 我们已经通过训练数据集对网络进行了2次训练,但是我们需要检查网络是否已经学到了东西。

我们将用神经网络的输出作为预测的类标来检查网络的预测性能,用样本的真实类标来校对。如果预测是正确的,我们将样本添加到正确预测的列表里。

好的,第一步,让我们从测试集中显示一张图像来熟悉它。

 

输出:

GroundTruth: cat ship ship plane

现在让我们看看 神经网络认为这些样本应该预测成什么:

outputs = net(images)

输出是预测与十个类的近似程度,与某一个类的近似程度越高,网络就越认为图像是属于这一类别。所以让我们打印其中最相似类别类标:

_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
for j in range(4)))

输出:

Predicted: cat ship car ship

结果看起开非常好,让我们看看网络在整个数据集上的表现。

correct = 0
total = 0
with torch.no_grad():
for data in testloader:
 images, labels = data
 outputs = net(images)
 _, predicted = torch.max(outputs.data, 1)
 total += labels.size(0)
 correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))

输出:

Accuracy of the network on the 10000 test images: 54 %

这看起来比随机预测要好,随机预测的准确率为10%(随机预测出为10类中的哪一类)。看来网络学到了东西。

class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
 images, labels = data
 outputs = net(images)
 _, predicted = torch.max(outputs, 1)
 c = (predicted == labels).squeeze()
for i in range(4):
 label = labels[i]
 class_correct[label] += c[i].item()
 class_total[label] += 1
for i in range(10):
print('Accuracy of %5s : %2d %%' % (
 classes[i], 100 * class_correct[i] / class_total[i]))

输出:

Accuracy of plane : 57 %
Accuracy of car : 73 %
Accuracy of bird : 49 %
Accuracy of cat : 54 %
Accuracy of deer : 18 %
Accuracy of dog : 20 %
Accuracy of frog : 58 %
Accuracy of horse : 74 %
Accuracy of ship : 70 %
Accuracy of truck : 66 %

所以接下来呢?

我们怎么在GPU上跑这些神经网络?

在GPU上训练 就像你怎么把一个张量转移到GPU上一样,你要将神经网络转到GPU上。 如果CUDA可以用,让我们首先定义下我们的设备为第一个可见的cuda设备。

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Assume that we are on a CUDA machine, then this should print a CUDA device:
print(device)

输出:

cuda:0

本节剩余部分都会假定设备就是台CUDA设备。

接着这些方法会递归地遍历所有模块,并将它们的参数和缓冲器转换为CUDA张量。

net.to(device)

记住你也必须在每一个步骤向GPU发送输入和目标:

inputs, labels = inputs.to(device), labels.to(device)

为什么没有注意到与CPU相比巨大的加速?因为你的网络非常小。

练习:尝试增加你的网络宽度(首个 nn.Conv2d 参数设定为 2,第二个nn.Conv2d参数设定为1–它们需要有相同的个数),看看会得到怎么的速度提升。

目标:

  • 深度理解了PyTorch的张量和神经网络
  • 训练了一个小的神经网络来分类图像

在多个GPU上训练

如果你想要来看到大规模加速,使用你的所有GPU,请查看:数据并行性(https://pytorch.org/tutorials/beginner/blitz/data_parallel_tutorial.html)

2020未来杯AI挑战赛-图像赛道-语音赛道同时开启,30万大奖等你来挑战!

https://ai.futurelab.tv/tournament/6

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值