LangChain入门教程 - 对话历史

一般情况下,聊天是没有状态的。但是很多场景我们是需要上下文记忆的。比如聊天机器人如果回答时不参考上下文信息,很容易出现前言不搭后语后语。如果需要手动维护对话历史信息,这工作量想想头都大,但是做为一个专门的AI开发工具,LangChain肯定是帮你想到了。

首先创建一个对话模型,记得自己设置环境变量QIANFAN_AKQIANFAN_SK

from langchain_community.chat_models import QianfanChatEndpoint

chatModel = QianfanChatEndpoint(
    model='ERNIE-Bot',
    endpoint='completions'
)

ChatMessageHistory

LC提供了专门的类用来管理对话历史记录,我们可以手工创建一个类试试。

from langchain.memory import ChatMessageHistory

history = ChatMessageHistory()
history.add_user_message("hi!")
history.add_ai_message("whats up?")
history.add_user_message("I'm XiaoMing")
history.add_ai_message("nice to meet you")

history.messages

'''输出
[HumanMessage(content='hi!'),
 AIMessage(content='whats up?'),
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值