使用Baidu Qianfan与Langchain进行文本嵌入:实用指南
引言
在现代AI开发中,Baidu Qianfan平台为企业开发者提供了一站式的大模型开发和服务运营解决方案。本文将介绍如何使用Langchain库与Qianfan平台进行文本嵌入,帮助您更有效地开发AI应用程序。
主要内容
1. 什么是Baidu Qianfan?
Baidu Qianfan是百度AI云推出的平台,提供了多种AI开发工具和环境,支持包括文心一言(ERNIE-Bot)在内的多种模型。本平台特别适合需要大规模模型应用的企业开发者。
2. 嵌入模型简介
嵌入模型是将文本转换为向量的工具,在自然语言处理任务中尤为重要。Langchain的embeddings
模块支持与Qianfan平台的集成,使得文本嵌入任务变得更加简单和高效。
3. API初始化
要使用Baidu Qianfan的LLM服务,您需要初始化以下参数。可以选择通过环境变量或直接在代码中初始化。
import os
from langchain_community.embeddings import QianfanEmbeddingsEndpoint
# 设置API密钥为环境变量
os.environ["QIANFAN_AK"] = "your_ak"
os.environ["QIANFAN_SK"] = "your_sk"
# 初始化嵌入终端
embed = QianfanEmbeddingsEndpoint(
# qianfan_ak='xxx', # 可选,已通过环境变量设置
# qianfan_sk='xxx' # 可选,已通过环境变量设置
)
代码示例
以下是一个使用Langchain与Qianfan嵌入文本的完整示例:
import os
from langchain_community.embeddings import QianfanEmbeddingsEndpoint
# 使用API代理服务提高访问稳定性
os.environ["QIANFAN_AK"] = "your_ak"
os.environ["QIANFAN_SK"] = "your_sk"
embed = QianfanEmbeddingsEndpoint()
# 同步嵌入文档
res = embed.embed_documents(["hi", "world"])
print(res)
# 异步嵌入查询
async def aioEmbed():
res = await embed.aembed_query("qianfan")
print(res[:8])
# 调用异步函数
await aioEmbed()
# 异步嵌入文档集
async def aioEmbedDocs():
res = await embed.aembed_documents(["hi", "world"])
for r in res:
print("", r[:8])
await aioEmbedDocs()
常见问题和解决方案
- 访问限制问题:在某些地区,访问Baidu Qianfan的API可能会受到网络限制,建议使用API代理服务以提高访问稳定性。
- 权限问题:确保您的AK/SK设置正确且具有足够的权限访问所需的API端点。
总结和进一步学习资源
通过本文的介绍,您应该能够轻松使用Langchain与Baidu Qianfan进行文本嵌入。对于更深入的学习,可以参考以下资源:
参考资料
- Baidu Qianfan平台官方文档
- Langchain库官方文档
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—