使用Baidu Qianfan与Langchain进行文本嵌入:实用指南

使用Baidu Qianfan与Langchain进行文本嵌入:实用指南

引言

在现代AI开发中,Baidu Qianfan平台为企业开发者提供了一站式的大模型开发和服务运营解决方案。本文将介绍如何使用Langchain库与Qianfan平台进行文本嵌入,帮助您更有效地开发AI应用程序。

主要内容

1. 什么是Baidu Qianfan?

Baidu Qianfan是百度AI云推出的平台,提供了多种AI开发工具和环境,支持包括文心一言(ERNIE-Bot)在内的多种模型。本平台特别适合需要大规模模型应用的企业开发者。

2. 嵌入模型简介

嵌入模型是将文本转换为向量的工具,在自然语言处理任务中尤为重要。Langchain的embeddings模块支持与Qianfan平台的集成,使得文本嵌入任务变得更加简单和高效。

3. API初始化

要使用Baidu Qianfan的LLM服务,您需要初始化以下参数。可以选择通过环境变量或直接在代码中初始化。

import os
from langchain_community.embeddings import QianfanEmbeddingsEndpoint

# 设置API密钥为环境变量
os.environ["QIANFAN_AK"] = "your_ak"
os.environ["QIANFAN_SK"] = "your_sk"

# 初始化嵌入终端
embed = QianfanEmbeddingsEndpoint(
    # qianfan_ak='xxx', # 可选,已通过环境变量设置
    # qianfan_sk='xxx'  # 可选,已通过环境变量设置
)

代码示例

以下是一个使用Langchain与Qianfan嵌入文本的完整示例:

import os
from langchain_community.embeddings import QianfanEmbeddingsEndpoint

# 使用API代理服务提高访问稳定性
os.environ["QIANFAN_AK"] = "your_ak"
os.environ["QIANFAN_SK"] = "your_sk"

embed = QianfanEmbeddingsEndpoint()

# 同步嵌入文档
res = embed.embed_documents(["hi", "world"])
print(res)

# 异步嵌入查询
async def aioEmbed():
    res = await embed.aembed_query("qianfan")
    print(res[:8])

# 调用异步函数
await aioEmbed()

# 异步嵌入文档集
async def aioEmbedDocs():
    res = await embed.aembed_documents(["hi", "world"])
    for r in res:
        print("", r[:8])

await aioEmbedDocs()

常见问题和解决方案

  • 访问限制问题:在某些地区,访问Baidu Qianfan的API可能会受到网络限制,建议使用API代理服务以提高访问稳定性。
  • 权限问题:确保您的AK/SK设置正确且具有足够的权限访问所需的API端点。

总结和进一步学习资源

通过本文的介绍,您应该能够轻松使用Langchain与Baidu Qianfan进行文本嵌入。对于更深入的学习,可以参考以下资源:

参考资料

  • Baidu Qianfan平台官方文档
  • Langchain库官方文档

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值