卡通变分图像纹理处理

183 篇文章 6 订阅
85 篇文章 2 订阅

Cartoon+Texture Variational Image Decomposition

This numerical tour explores the use of variational energies to decompose an image into a cartoon and a texture layer.

Contents

Installing toolboxes and setting up the path.

You need to download the following files: signal toolbox and general toolbox.

You need to unzip these toolboxes in your working directory, so that you have toolbox_signal and toolbox_general in your directory.

For Scilab user: you must replace the Matlab comment '%' by its Scilab counterpart '//'.

Recommandation: You should create a text file named for instance numericaltour.sce (in Scilab) or numericaltour.m (in Matlab) to write all the Scilab/Matlab command you want to execute. Then, simply run exec('numericaltour.sce'); (in Scilab) or numericaltour; (in Matlab) to run the commands.

Execute this line only if you are using Matlab.

getd = @(p)path(p,path); % scilab users must *not* execute this

Then you can add the toolboxes to the path.

getd('toolbox_signal/');
getd('toolbox_general/');

A variational image separation finds a decomposition [Math Processing Error] where [Math Processing Error] and [Math Processing Error] are solutions of an optimization problem of the form [Math Processing Error]

where [Math Processing Error] is a cartoon image prior (that favors edges) and [Math Processing Error] is a texture image prior (that favors oscillations). The parameters [Math Processing Error] should be adapted to the noise level and the amount of edge/textures.

When no noise is present in [Math Processing Error], so that [Math Processing Error], on minimizes [Math Processing Error]

In this tour, we define [Math Processing Error] as the total variation prior. For [Math Processing Error], we use the Hilbert norm framework introduced in:

Constrained and SNR-based Solutions for TV-Hilbert Space Image Denoising, Jean-François Aujol and Guy Gilboa, Journal of Mathematical Imaging and Vision, volume 26, numbers 1-2, pages 217-237, November 2006.

Total Variation Cartoon Prior

The total variation is a Banach norm. On the contrary to the Sobolev norm, it is able to take into account step edges.

First we load a textured image.

n = 256;
name = 'barb';
f = rescale( crop(load_image(name),n) );

Display it.

clf;
imageplot(f);

The total variation of a smooth image [Math Processing Error] is defined as [Math Processing Error]

It is extended to non-smooth images having step discontinuities.

The total variation of an image is also equal to the total length of its level sets. [Math Processing Error]

Where [Math Processing Error] is the level set at [Math Processing Error] of the image [Math Processing Error] [Math Processing Error]

The Gradient of the TV norm is [Math Processing Error]

The gradient of the TV norm is not defined if at a pixel [Math Processing Error] one has [Math Processing Error]. This means that the TV norm is difficult to minimize, and its gradient flow is not well defined.

To define a gradient flow, we consider instead a smooth TV norm [Math Processing Error]

This corresponds to replacing [Math Processing Error] by [Math Processing Error] which is a smooth function.

We display (in 1D) the smoothing of the absolute value.

u = linspace(-5,5)';
clf;
subplot(2,1,1); hold('on');
plot(u, abs(u), 'b');
plot(u, sqrt(.5^2+u.^2), 'r');
title('\epsilon=1/2'); axis('square');
subplot(2,1,2); hold('on');
plot(u, abs(u), 'b');
plot(u, sqrt(1^2+u.^2), 'r');
title('\epsilon=1'); axis('square');

In the following we set a small enough regularization parameter [Math Processing Error].

epsilon = 1e-2;

Compute the (smoothed) total variation of [Math Processing Error].

J = @(u)sum(sum( sqrt( epsilon^2 + sum3(grad(u).^2,3) ) ));
disp(['J(f) = ' num2str(J(f),3)]);
J(f) = 6.96e+03

TV-[Math Processing Error] Model

The simplest decomposition method performs a total variation denoising: [Math Processing Error]

It corresponds to the TV-[Math Processing Error] model of Rudin-Osher-Fatermi, because the texture prior is the [Math Processing Error] norm: [Math Processing Error]

This a poor texture prior because it just assumes the texture has a small overall energy, and does not care about the oscillations.

Define the regularization parameter [Math Processing Error].

lambda = .2;

The step size for diffusion should satisfy: [Math Processing Error]

tau = 1.9 / ( 1 + lambda * 8 / epsilon);

Initialization of the minimization.

u = f;

The Gradient of the smoothed TV norm is [Math Processing Error]

Shortcut for the gradient of the smoothed TV norm.

GradJ0 = @(Gr)-div( Gr ./ repmat( sqrt( epsilon^2 + sum3(Gr.^2,3) ) , [1 1 2]) );
GradJ = @(u)GradJ0(grad(u));

One step of descent.

u = u - tau*( u - f + lambda* GradJ(u) );

Exercice 1: (the solution is exo1.m) Compute the gradient descent and monitor the minimized energy.

exo1;

Display the cartoon layer.

clf;
imageplot(u);

Shortcut to increase the contrast of the textured layer for better display.

rho = .8; % constrast factor
eta = .2; % saturation limit
displaytexture0 = @(x)sign(x).*abs(x).^rho;
displaytexture  = @(v)displaytexture0( clamp(v,-eta,eta)/eta );

Display the textured layer.

clf;
imageplot( displaytexture(f-u) );

Gabor Hilbert Energy

To model the texture, one should use a prior [Math Processing Error] that favors oscillations. We thus use a weighted [Math Processing Error] norms computed over the Fourier domain: [Math Processing Error] where [Math Processing Error] is the weight associated to the frequency [Math Processing Error].

This texture norm can be rewritten using the Fourier transform [Math Processing Error] as [Math Processing Error]

To favor oscillation, we use a weight that is large for low frequency and small for large frequency. A simple Hilbert norm is a inverse Sobolev space [Math Processing Error].

It was first introduced in:

S.J. Osher, A. Sole, and L.A. Vese, Image decomposition and restoration using total variation minimization and the [Math Processing Error] norm, SIAM Multiscale Modeling and Simulation, 1(3):349-370, 2003.

This Hilbert norm is defined using [Math Processing Error] where [Math Processing Error] is a small constant that prevents explosion at low frequencies.

eta = .05;
x = [0:n/2-1, -n/2:-1]/n;
[Y,X] = meshgrid(x,x);
W = 1 ./ (eta + sqrt(X.^2 + Y.^2));

Display the inverse weight, with 0 frequency in the middle.

imageplot(fftshift(1./W));

Compute the texture norm. The [Math Processing Error] normalization is intended to make the Fourier transform orthogonal.

T = @(v)1/2*norm( W.*fft2(v)/n, 'fro' ).^2;
disp(['T(f) = ' num2str(T(f), 3) ] );
T(f) = 3.13e+06

The gradient of the texture norm is [Math Processing Error] where [Math Processing Error] is the inverse Fourier transform. Note that if [Math Processing Error], this gradient is the inverse Laplacian [Math Processing Error]

Define the filtering operator [Math Processing Error].

GradT = @(f)real(ifft2(W.^2.*fft2(f)));

This is a low pass filter.

imageplot(GradT(f));

Define its inverse [Math Processing Error].

GradTInv = @(f)real(ifft2(fft2(f)./W.^2));

It is a high pass filter.

imageplot(GradTInv(f));

TV-[Math Processing Error] Image Decomposition

The TV-Hilbert decomposition solves [Math Processing Error]

The mapping [Math Processing Error] is a smooth functional, it can thus be minimized using a gradient descent: [Math Processing Error]

The parameter [Math Processing Error] for the texture/cartoon tradeoff.

lambda = 5;

The gradient descent step size should satisfy: [Math Processing Error]

tau = 1.9 /( max(W(:))^2 + 8*lambda/epsilon );

Initial cartoon layer.

u = f;

Gradient descent step.

u = u - tau * ( GradT(u-f) + lambda*GradJ(u) );

Exercice 2: (the solution is exo2.m) Perform the gradient descent, monitor the decay of the energy.

exo2;

Display the cartoon layer.

clf;
imageplot(u);

Display the textured layer.

clf;
imageplot( displaytexture(f-u) );

TV-Gabor Image Decomposition

The [Math Processing Error] texture model is intended to capture very high frequency, and thus performs poorly for medium frequency textures.

To capture these patterns, we follow:

Structure-Texture Image Decomposition - Modeling, Algorithms, and Parameter Selection, Jean-Francois Aujol, Guy Gilboa, Tony Chan, and Stanley Osher, International Journal of Computer Vision, volume 67, number 1, pages 111-136, April 2006

and we use a radial weight profile centered around a frequency [Math Processing Error].

To determine the target frequency [Math Processing Error], we analyse a sub-window around a point [Math Processing Error] of the image containing approximately a single frequency.

Location [Math Processing Error] of the sub-window.

p = [125 200];

Size [Math Processing Error], in pixels, of the sub-window.

mu = 10;

Compute a Gaussian mask.

[Y,X] = meshgrid( 1:n, 1:n );
U = exp( ( -(X-p(1)).^2 - (Y-p(2)).^2 )/(2*mu^2)  );

Display the masked image.

clf;
imageplot(U.*f);

Remove the low frequencies from the Fourier transform, after centering.

F = fft2(U.*f);
F = fftshift(F);
F(end/2-20:end/2+20,end/2-20:end/2+20) = 0;

Compute the location [Math Processing Error] of the pick of the spectrum.

[tmp,i] = max(abs(F(:)));
[xm,ym] = ind2sub([n n], i);

Display.

clf; hold on;
imageplot(abs(F));
h = plot( [ym n-ym], [xm  n-xm], 'r.' );
set(h, 'MarkerSize', 20);

Target frequency is the distance between [Math Processing Error] and the center frequency.

r = sqrt( (xm-n/2)^2 + (ym-n/2)^2 );

We use the following weights: [Math Processing Error] where [Math Processing Error] controls the precision one expect about the frequency location.

Radial weight profile.

sigma = 10;
x = [0:n/2-1, -n/2:-1];
[Y,X] = meshgrid(x,x);
R = sqrt(X.^2+Y.^2);
W = 1 - exp( -(r-R).^2 / (2*sigma^2) );

Display the weight.

imageplot(fftshift(W));

Exercice 3: (the solution is exo3.m) Define the operators [Math Processing Error] and apply it to an images.

exo3;

Exercice 4: (the solution is exo4.m) For a well chosen value of [Math Processing Error], perform the TV-Hilbert decomposition with this texture kernel.

exo4;

Display the cartoon layer.

clf;
imageplot(u);

Display the textured layer.

clf;
imageplot( displaytexture(f-u) );
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值