如何使用Inception网络计算IS值?

使用 Inception 网络计算 IS 值(Inception Score)主要涉及以下步骤:
 
准备工作
 
- 获取预训练的 Inception 网络:通常使用在 ImageNet 等大型数据集上训练好的 Inception v3 模型。你可以从已有的深度学习框架(如 TensorFlow、PyTorch)中获取该模型,或者使用公开的预训练模型权重文件。
- 准备生成的图像数据:将扩散模型生成的图像整理好,确保图像的格式和尺寸与 Inception 网络的输入要求相匹配。一般来说,图像需要进行预处理,如归一化、调整大小等。
 
计算过程
 
- 前向传播获取预测概率分布:
- 将生成的每张图像逐个输入到预训练的 Inception 网络中,进行前向传播计算。
- Inception 网络会输出一个 1000 维的张量,表示输入图像属于各个类别的概率分布,即 ,其中 表示输入图像, 表示类别。
- 计算先验类别边缘分布  :
- 对所有生成的图像,通过以下公式计算先验类别边缘分布 :     ,其中 表示生成的图像数量, 是第 张图像属于类别 的概率。
- 计算 KL 散度:对于每张图像,计算其预测概率分布 与先验类别边缘分布 之间的 KL 散度(Kullback–Leibler divergence),公式为     。
- 计算 IS 值:
- 先对每张图像的 KL 散度进行计算,然后对所有图像的 KL 散度取平均值,并进行指数运算,得到最终的 IS 值,即     ,其中 表示生成图像的 Inception Score, 代表生成模型。
- 为了使结果更稳定可靠,通常会多次重复上述过程(例如分成多个批次进行计算),最后计算得到的 IS 值的均值和标准差作为最终的评估指标。
 
较高的 IS 值表示生成的图像具有较高的质量和多样性。然而,IS 值也存在一些局限性,例如对图像的类别信息较为敏感,可能无法准确反映某些特定情况下的生成质量。在实际应用中,通常会结合其他评估指标(如 FID 等)来综合评估扩散模型的生成质量。

### Inception Score概念 Inception Score (IS) 是一种用于评估生成对抗网络(GANs)所生成图像质量和多样性的量化指标[^2]。此分数通过衡量生成样本的质量和多样性来提供关于模型表现的信息。 具体而言,Inception Score 使用预先训练好的分类器——通常是GoogleNet(Inception v3),对由生成模型创建的一组假定真实分布的数据点进行预测。这些预测的概率向量被用来计算两个熵:条件熵 \(H(p(y|x))\) 和边缘熵 \(H(p(y))\) 。最终的得分则通过对这两个熵得到: \[ \text{IS} = e^{(H(p(y))-H(p(y|x)))}\] 这里 \(p(y)\) 表示类别标签y在整个数据集中出现概率;而\( p(y|x)\) 则表示给定输入x条件下类别的条件概率分布。 高分意味着更好的视觉效果以及更广泛的变化范围内的输出结果。然而得注意的是,尽管较高的Inception Scores通常表明较好的性能,但这并不是绝对的标准,因为某些情况下即使得分为零也可能对应着高质量但缺乏变化的结果或是相反的情况。 ### 计算方法 为了计算Inception Score,在实践中可以采用以下Python代码片段作为指导: ```python import torch from torchvision import models, transforms from PIL import Image import numpy as np from scipy.stats import entropy def inception_score(imgs, batch_size=32, resize=False): """Computes the inception score of generated images.""" # Load pre-trained model and set it to evaluation mode. inception_model = models.inception_v3(pretrained=True).cuda() inception_model.eval() transform = transforms.Compose([ transforms.Resize((299, 299)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) def get_pred(x): with torch.no_grad(): pred = inception_model(transform(Image.fromarray(np.uint8(x))).unsqueeze(0).cuda()) return torch.softmax(pred, dim=-1) preds = [] for i in range(int(len(imgs)/batch_size)): batch_images = imgs[i*batch_size:(i+1)*batch_size] batch_preds = [get_pred(image.cpu().numpy()) for image in batch_images] preds.append(torch.cat(batch_preds)) preds = torch.cat(preds, dim=0).cpu().numpy() py = np.mean(preds, axis=0) scores = [] for i in range(preds.shape[0]): pyx = preds[i, :] scores.append(entropy(pyx, py)) return np.exp(np.mean(scores)) # Example usage: # Assuming `generated_imgs` is a list or tensor containing your generated images, # you can compute their IS like this: is_mean = inception_score(generated_imgs) print(f"Inception Score: {is_mean}") ``` 这段脚本展示了如何加载预训练过的InceptionV3模型并使用其softmax层输出来进行评分的过程。注意这里的实现假设传入的是已经处理好可以直接使用的图像列表或张量形式的数据集。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值