使用 Inception 网络计算 IS 值(Inception Score)主要涉及以下步骤:
准备工作
- 获取预训练的 Inception 网络:通常使用在 ImageNet 等大型数据集上训练好的 Inception v3 模型。你可以从已有的深度学习框架(如 TensorFlow、PyTorch)中获取该模型,或者使用公开的预训练模型权重文件。
- 准备生成的图像数据:将扩散模型生成的图像整理好,确保图像的格式和尺寸与 Inception 网络的输入要求相匹配。一般来说,图像需要进行预处理,如归一化、调整大小等。
计算过程
- 前向传播获取预测概率分布:
- 将生成的每张图像逐个输入到预训练的 Inception 网络中,进行前向传播计算。
- Inception 网络会输出一个 1000 维的张量,表示输入图像属于各个类别的概率分布,即 ,其中 表示输入图像, 表示类别。
- 计算先验类别边缘分布 :
- 对所有生成的图像,通过以下公式计算先验类别边缘分布 : ,其中 表示生成的图像数量, 是第 张图像属于类别 的概率。
- 计算 KL 散度:对于每张图像,计算其预测概率分布 与先验类别边缘分布 之间的 KL 散度(Kullback–Leibler divergence),公式为 。
- 计算 IS 值:
- 先对每张图像的 KL 散度进行计算,然后对所有图像的 KL 散度取平均值,并进行指数运算,得到最终的 IS 值,即 ,其中 表示生成图像的 Inception Score, 代表生成模型。
- 为了使结果更稳定可靠,通常会多次重复上述过程(例如分成多个批次进行计算),最后计算得到的 IS 值的均值和标准差作为最终的评估指标。
较高的 IS 值表示生成的图像具有较高的质量和多样性。然而,IS 值也存在一些局限性,例如对图像的类别信息较为敏感,可能无法准确反映某些特定情况下的生成质量。在实际应用中,通常会结合其他评估指标(如 FID 等)来综合评估扩散模型的生成质量。
11-12
3123
03-19
804