齐次坐标的意义

 
首先想像有个绝对不变的坐标系(0,0),记为W,然后以W为参照,建立两个坐标系O1和O2,O1的原点在W的(1,1)处,O2的原点在W的(2,2)处。那么W中的一个点P(x,y)在O1中将变为P(x-1,y-1),在O2中将是P(x-2,y-2),这样同一个点P在不同的坐标系下就具有了不同的表示。这会产生一个问题:显然,P点在二维空间的位置是唯一的,是与坐标系无关的,而不同坐标系下的表示看上去体现不了这种无关性。

       我们使用的是坐标系这样一个概念,坐标系忽略了坐标原点所具有的重要意义:正是原点标示了该坐标系处于哪个参照位置。如果用矩阵来表示一个二维坐标系,将会是如下形式:
|1 0|

|0 1|,其中(1 0)T表示一个基矢量,(01)T表示另一个基矢量,它们互相垂直,因此能利用它们标记整个二维空间。
(x,y)*|1 0| = (x,y)

        |0 1|

这就是二维坐标的实际意义。

 

现在考虑将坐标原点(a,b)也引入到这个矩阵表示中来:
|1 0 |
|0 1 |
|a b |   【个人感觉这里应该是-a和-b】
我们用这个矩阵可以表示二维空间中任意位置的一个坐标系,当然,这个坐标系的基矢量可以不为(0 1)T和(10)T,为了和坐标系区分,我们称这种新表示为标架表示。
好,问题来了,如果我们仍然用(x y)来表示点P,那么根据矩阵的乘法规则,我们无法完成其乘法:mx N 的矩阵只能和 Nxk的矩阵相乘。解决的办法就是: 给P点添一个尾巴,这个尾巴通常为1:P(x y1),这就是P的齐次坐标,利用新的齐次坐标和矩阵相乘得到的结果为:(x+a,y+b),这样同一个点在不同标架下的不同表示最终会得到同一个计算结果,它反映了这样一个事实:同一个点在不同标架下的不同表示其实是等价的,这一点恰恰是使用坐标系无法体现出来的。
显然上面那个 3x2的矩阵和P的齐次表示相乘得到的不是齐次坐标,所以应该将它扩充成3x3的方阵:
|1 0 0|
|0 1 0|
|a b 1|

(end)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值