投影空间-齐次坐标的几何意义

投影空间(Projection space)中两条平行线在无穷远处交于一点。

        在欧氏几何空间,两条平行线永远不会相交。但在投影空间中,如上图所示两条铁轨在地平线处却是会相交的,因为在无限远处它们看起来相交于一点。

在欧氏(或笛卡尔坐标系)空间里描述2D/3D 几何物体是很理想的,在投影空间里面却并不是这样的。 我们用 (x, y )  表 示笛卡尔坐标中的一个 2D 点,而处于无限远处的点 (∞,∞) 在笛卡尔空间里是没有意义的。投影空间里的两条平行线会在无限远处相交于一点,但欧氏空间无法搞定这个问题(因为无限远处的点在笛卡尔坐标值是没有意义),因此数学家想出齐次坐标这个方法。

 

笛卡尔坐标中的点 (1, 2) 在齐次坐标中就是 (1, 2, 1) 。如果这个点移动到无限远(∞,∞)处,那么在笛卡尔坐标内就是(∞,∞),这样写没什么意义,看着也不行。而 在齐次坐标中就是 (1, 2, 0) ,这样我们就避免了用没意义的"∞" 来描述无限远处的点,从数学角度来讲,1/0  2/0都是无意义的。 可以拿这个(1,2,0)来表示 无意义的这个(∞,∞),所以从数学上可以用(1,2,0)来表示无穷远的线。

解决办法: 其次坐标

       August Ferdinand Möbius 提出的齐次坐标(Homogeneous coordinates)让我们能够在投影空间里进行图像和几何处理,齐次坐标用 N + 1个分量来描述 N 维坐标。比如,2D 齐次坐标是在笛卡尔坐标(X, Y)的基础上增加一个新分量 w,变成(x, y, w),其中笛卡尔坐标系中的大X,Y 与齐次坐标中的小x,y有如下对应关系:

X = x/w
Y = y/w 

为什么叫齐次坐标?

前面提到,我们分别用齐次坐标中的 x 和 y 除以 w 就得到笛卡尔坐标中的 x 和y:

 

仔细观察下面的转换例子,可以发现些有趣的东西:
 
上 图中,点 (1, 2, 3), (2, 4, 6) 和 (4, 8, 12) 对应笛卡尔坐标中的同一点 (1/3, 2/3)。 任意数量积的(1a, 2a, 3a) 始终对应于笛卡尔坐标中的同一点 (1/3, 2/3)。因此这些点是“齐次”的,因为他们始终对应于笛卡尔坐标中的同一点。换句话说,齐次坐标描述缩放不变性(scale invariant)。

证明: 两平行线可以相交 (数学的方式证明了齐次坐标(x,y,W),w=0 可以表示两列火车道为什么可以平行,)

笛卡尔坐标系中,对于如下两个直线方程:

 
如果 C ≠ D,以上方程组无解;如果 C = D,那这两条线就是同一条线了。

下面我们用 x/w, y/w 代替 x, y 放到投影空间里来求解:

 
现在我们就可以在 C ≠ D 的情况得到一组解 (x, y, 0),代入得  (C - D)w = 0,因为 C ≠ D,所以 w = 0。因而,两条平行线相交于投影空间中无限远处的一点  (x, y, 0)。

齐次坐标在计算机图形学中是有用的,将 3D 场景投影到 2D 平面的过程中就用到它了。

  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值