为什么要引入齐次坐标,齐次坐标的意义(一)

问题:两条平行线可以相交于一点

在欧氏几何空间,同一平面的两条平行线不能相交,这是我们都熟悉的一种场景。

然而,在透视空间里面,两条平行线可以相交,例如:火车轨道随着我们的视线越来越窄,最后两条平行线在无穷远处交于一

点。

欧氏空间(或者笛卡尔空间)描述2D/3D几何非常适合,但是这种方法却不适合处理透视空间的问题(实际上,欧氏几何是透视

几何的一个子集合),2维笛卡尔坐标可以表示为(x,y)。

如果一个点在无穷远处,这个点的坐标将会(∞,∞),在欧氏空间,这变得没有意义。

平行线在透视空间的无穷远处交于一点,但是在欧氏空间却不能,数学家发现了一种方式来解决这个问题。

 

方法:齐次坐标

简而言之,齐次坐标就是用N+1维来代表N维坐标

我们可以在一个2D笛卡尔坐标末尾加上一个额外的变量w来形成2D齐次坐标,因此,一个点(X,Y)在齐次坐标里面变成了

(x,y,w),并且有

X = x/w

Y = y/w

例如,笛卡尔坐标系下(1,2)的齐次坐标可以表示为(1,2,1),如果点(1,2)移动到无限远处,在笛卡尔坐标下它变为

(∞,∞),然后它的齐次坐标表示为(1,2,0),因为(1/0, 2/0) = (∞,∞),我们可以不用”∞"来表示一个无穷远处的点了,哈哈。

 

为什么叫齐次坐标?

我们把齐次坐标转化为笛卡尔坐标的方法是前面n-1个坐标分量分别除以最后一个分量即可。

 

转化齐次坐标到笛卡尔坐标的过程中,我们有一个发现,例如:

你会发现(1, 2, 3), (2, 4, 6) 和(4, 8, 12)对应同一个Euclidean point (1/3, 2/3),任何标量的乘积,例如(1a, 2a, 3a) 对应 笛卡尔空间里面的(1/3, 2/3) 。因此,这些点是“齐次的”,因为他们代表了笛卡尔坐标系里面的同一个点。换句话说,齐次坐标有规模不变性。

证明:两条直线可以相交

考虑如下方程组:

我们知道在笛卡尔坐标系里面,该方程组无解,因为C ≠ D,如果C=D,两条直线就相同了。 让我们在透视空间里面,用齐次坐标x/w, y/w代替x ,y

现在我们有一个解(x, y, 0),两条直线相交于(x, y, 0),这个点在无穷远处。

齐次坐标的意义:

       使用齐次坐标,可以表示 平行线在透视空间的无穷远处交于一点。在欧氏空间,这变得没有意义,所以欧式坐标不能表示。

即:齐次坐标可以表示无穷远处的点。例如:

如果点(1,2)移动到无限远处,在笛卡尔坐标下它变为(∞,∞),然后它的齐次坐标表示为(1,2,0),因为(1/0, 2/0) =

(∞,∞),我们可以不用”∞"来表示一个无穷远处的点了。

 

附:为什么要引入齐次坐标,齐次坐标的意义(二) https://blog.csdn.net/zhuiqiuzhuoyue583/article/details/95230246

 

参考:http://www.songho.ca/math/homogeneous/homogeneous.html

           https://www.zhihu.com/question/59595799

 

<think>嗯,用户问为什么计算机图形学要引入齐次坐标。之前他们问过二维和三维齐次坐标的矩阵大小,现在这个问题是相关的,可能是在深入理解之前的主题。用户可能是学习计算机图形学的学生,或者是对图形编程感兴趣的人,想了解底层原理。 首先,我需要回忆齐次坐标的基本概念。齐次坐标通过添加个维度,比如二维用(x, y, w),三维用(x, y, z, w),通常w设为1。这样可以将平移变换从加法变成矩阵乘法,统各种变换操作。 用户可能想知道为什么平移不能用普通的矩阵乘法处理,而必须引入齐次坐标。在二维中,普通的2x2矩阵可以处理旋转和缩放,但平移需要向量加法,这样变换组合起来不方便。用齐次坐标后,所有变换(平移、旋转、缩放)都能用矩阵乘法表示,方便组合多个变换,提高计算效率。 另外,齐次坐标还能处理无穷远点(当w=0时),这可能在透视投影中有用。不过用户的问题可能更关注图形学中的几何变换,而不是投影部分。需要确认这点,但先按主要用途回答。 还要考虑用户可能的疑问,比如引入额外维度是否增加了计算复杂度。但实际中,矩阵乘法的统性带来的好处超过了增加维度的开销,尤其是硬件优化后,计算效率更高。 另外,可能需要提到齐次坐标在透视变换中的作用,例如投影矩阵通常使用4x4矩阵,将3D点转换到裁剪空间,这时候w分量用于透视除法。这点可能也是引入的原因之,但用户的问题可能集中在几何变换的统性上。 需要分点回答,可能包括:统变换操作、方便矩阵组合、处理透视投影、区分点和向量。之前回答过相关问题,现在要详细说明每个点,尤其是为什么必须用齐次坐标才能统平移和其他线性变换。 还要注意用户的背景,可能不是数学专业,所以需要用通俗的语言解释,避免过于抽象的数学术语。例如,解释平移需要额外维度才能用矩阵乘法,否则只能用分开的加法和乘法,导致变换组合麻烦。 可能用户在学习图形学的时候遇到了变换组合的问题,比如先旋转再平移,或者变换顺序的影响,而齐次坐标通过统矩阵乘法解决这个问题。需要强调统性带来的好处,比如代码实现更简洁,变换组合更高效。 总结思考,回答应包含以下几点: 1. 统变换操作(平移、旋转、缩放)为矩阵乘法。 2. 方便组合多个变换,提高效率。 3. 处理透视投影和投影变换。 4. 区分点与向量,避免平移对向量的影响。</think>在计算机图形学中引入齐次坐标,主要是为了解决以下关键问题,同时为几何变换和投影提供统的数学框架: --- ### 1. **统平移变换与线性变换** - **问题**:在普通笛卡尔坐标系中,平移变换(移动物体位置)无法通过标准的2×2(二维)或3×3(三维)矩阵乘法实现,必须单独用向量加法完成。例如,二维平移需要: ``` x' = x + tx y' = y + ty ``` 这与旋转、缩放等线性变换(矩阵乘法)形式不致。 - **解决方案**:齐次坐标通过增加个维度(如二维点变为`(x, y, 1)`),将平移转化为矩阵乘法。例如,二维平移矩阵: ``` |1 0 tx| |x| |0 1 ty| * |y| |0 0 1 | |1| ``` 这样,所有几何变换(平移、旋转、缩放、错切)均可统为矩阵乘法。 --- ### 2. **简化变换的组合** - **问题**:复杂图形操作(如“先旋转后平移再缩放”)需要依次执行多个变换。普通坐标下需多次混合使用矩阵乘法和向量加法,计算繁琐且效率低。 - **解决方案**:齐次坐标下,所有变换均为矩阵乘法,多个变换可通过矩阵连乘(结合律)合并为单个矩阵。例如: ``` 最终变换矩阵 = 平移矩阵 × 旋转矩阵 × 缩放矩阵 ``` 只需计算次合并后的矩阵,即可高效应用到所有顶点。 --- ### 3. **支持透视投影(3D到2D的映射)** - **问题**:3D场景渲染时,需要将物体投影到2D屏幕,模拟人眼的透视效果(近大远小)。普通3D坐标无法直接表示这种非线性关系。 - **解决方案**:齐次坐标的第四分量(w)在透视投影中用于存储深度信息。通过投影矩阵将3D点转换为齐次坐标`(x, y, z, w)`,随后进行“透视除法”(即`(x/w, y/w, z/w)`),实现非线性透视效果。 --- ### 4. **区分“点”和“向量”** - **问题**:在几何中,“点”需要被平移,而“向量”(如法线、方向)不应受平移影响。普通坐标无法在数学上区分两者。 - **解决方案**:齐次坐标中: - **点**:表示为`(x, y, z, 1)`,平移会改变其位置。 - **向量**:表示为`(x, y, z, 0)`,平移矩阵对其无效(因最后列为平移量,乘0后消失)。 --- ### 5. **处理无穷远点与理想点** - **应用场景**:在投影几何中,平行线在透视中相交于“消失点”(如铁轨尽头)。齐次坐标中,当w=0时,坐标表示无穷远点`(x, y, z, 0)`,为处理这类理想化概念提供了数学工具。 --- ### 实际应用示例 - **OpenGL/DirectX**:图形API强制使用4×4齐次矩阵处理顶点变换。 - **模型-视图-投影矩阵(MVP)**:将物体从局部坐标→世界坐标→相机坐标→屏幕坐标的转换,全程依赖齐次坐标矩阵连乘。 - **骨骼动画**:角色关节的层级变换通过齐次矩阵高效组合。 --- ### 总结 齐次坐标通过**升维**,将复杂的几何操作统为矩阵乘法,解决了平移与线性变换的割裂问题,简化了计算,并支持透视投影等高级图形效果。它是现代计算机图形学中不可或缺的数学工具。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值