【AI开发:语言】二、Qwen1.5-7B模型本地部署CPU和GPU版

本文介绍了如何使用LMStudio下载和运行HuggingFace模型,如4BGGUF格式,包括安装、加载模型、API功能以及与Koblod的对比。作者还提供了不同厂商的模型资源链接和API文档地址。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

        之前文章,我们采用了Koblod运行Yi-34B大模型,本文采用LM Studio来运行千问模型。

LM Studio并没有开源,但是可以免费使用,他是目前本地进行模型测试最好的工具了。

        在这里,依然使用Windows 10进行部署和测试,没有GPU。

        注意:LM的运行速度相比较Kobold两者差不多,而且也提供WEB服务,稍后也研究下他的API功能,LM的功能更多一些有待开发。

        完整工具包下载(均为官方版本):AI开发工具包官方版下载丨最新版下载丨绿色版下载丨APP下载-123云盘123云盘为您提供AI开发工具包最新版正式版官方版绿色版下载,AI开发工具包安卓版手机版apk免费下载安装到手机,支持电脑端一键快捷安装icon-default.png?t=N7T8https://www.123pan.com/s/b5zTTd-tyaH.html%E6%8F%90%E5%8F%96%E7%A0%81:rnwi

一、LM Studio下载

下载地址:LM Studio - Discover, download, and run local LLMs

二、模型下载

下载地址:AI快站 - HuggingFace模型免费加速下载

我们要从这里选择需要的模型。其他模型资源如下:

1.其他模型资源

  • 国内厂商模型
序号厂商访问地址
1阿里通义千问AI快站 - HuggingFace模型免费加速下载
2百川智能AI快站 - HuggingFace模型免费加速下载
3CodeFuseAI快站 - HuggingFace模型免费加速下载
4上海人工智能实验室AI快站 - HuggingFace模型免费加速下载
5智谱AI快站 - HuggingFace模型免费加速下载
6智源人工智能研究院AI快站 - HuggingFace模型免费加速下载
7FlagAlphaAI快站 - HuggingFace模型免费加速下载
8零一万物AI快站 - HuggingFace模型免费加速下载
  • 海外厂商模型
序号厂商访问地址
1googleAI快站 - HuggingFace模型免费加速下载
2codefuse-aiAI快站 - HuggingFace模型免费加速下载
3mosaicmlAI快站 - HuggingFace模型免费加速下载
4bigcodeAI快站 - HuggingFace模型免费加速下载
5lmsysAI快站 - HuggingFace模型免费加速下载
6NousResearchAI快站 - HuggingFace模型免费加速下载
7OpenAssistantAI快站 - HuggingFace模型免费加速下载
8tiiuaeAI快站 - HuggingFace模型免费加速下载
9bigscienceAI快站 - HuggingFace模型免费加速下载
10diffusersAI快站 - HuggingFace模型免费加速下载
11microsoftAI快站 - HuggingFace模型免费加速下载
12runwaymlAI快站 - HuggingFace模型免费加速下载
13HuggingFaceH4AI快站 - HuggingFace模型免费加速下载
14garage-bAIndAI快站 - HuggingFace模型免费加速下载
15openaiAI快站 - HuggingFace模型免费加速下载

2.需要的模型

本次部署,我们依然选择4B,当然还是选择了GGUF格式,稍后我还要部署到服务器端。

三、安装和打开LM Studio

双击 LM Studio setup.exe,稍等片刻,它会自动安装到C盘,可以挪走,也可以不动。

四、加载和使用模型

1.创建模型文件夹        

        我们先把已经下载好的本地模型,放到它指定的目录下,否则就无法加载模型,其中有两个文件夹第一次可能需要手动建立Publisher和Repository,他俩是上下级关系 。

C:\Users\Administrator\.cache\lm-studio\models\Publisher\Repository

 将我们需要用的模型拷贝进来

2.重新启动LM

重启后,我们就可以去查看自己的模型了。

 3.修改模型文件夹

D:\LM-Studio\models\Publisher\Repository
#新建Publisher和Repository

在选择模型的时候,只选择到 models这一级就可以了,多选无效。

4.使用AI对话

五、LS的API功能

API文档:Local LLM Server | LM Studio

由于时间问题,稍后再做整理和测试。

六、最后

        Kobold和LM Studio各有千秋吧,一个是简单,另外一个就是功能多。所以在使用的时候我们可以根据自己的需求来选择。

### 解决 DeepSeek 本地部署GPU 未启用问题 #### 配置文件修改 为了确保 DeepSeek 能够识别并利用 GPU 进行加速,在配置过程中需确认 `CUDA` `cuDNN` 已经正确安装,并且本兼容所使用的 TensorFlow 或 PyTorch 本。通常情况下,这涉及到编辑框架特定的配置文件或命令行参数来指明使用 GPU 设备。 对于基于 TensorFlow 的项目,可以在启动脚本中加入如下代码片段以强制使用 GPU: ```python import tensorflow as tf gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: # 设置内存增长方式为按需分配 for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) logical_gpus = tf.config.experimental.list_logical_devices('GPU') print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs") except RuntimeError as e: print(e) ``` 而对于 PyTorch 用户,则可以通过简单地调用 `.cuda()` 方法或将张量移动到 CUDA 设备上来完成相同的操作[^1]。 #### 依赖安装 确保已安装适用于 Windows 平台的 NVIDIA 显卡驱动程序以及相应的 CUDA Toolkit cuDNN 库。这些组件可通过 NVIDIA 官方网站获取最新稳定。此外,建议采用 Anaconda 来创建独立的 Python 环境,并通过 conda 命令安装预编译好的深度学习库及其依赖项,从而减少手动处理复杂依赖关系的工作量。 例如: ```bash conda create -n deepseek_env python=3.9 conda activate deepseek_env conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch pip install transformers datasets ``` #### 环境变量设置 除了上述操作外,还需要适当调整系统的环境变量以便更好地支持 GPU 加速功能。特别是当存在多个 GPU 卡时,可能需要设定 `CUDA_VISIBLE_DEVICES` 变量来限定可用设备范围;另外,针对某些特殊场景(如 Ollama 模型),还需额外定义 `OLLAMA_MODELS` 环境变量指向自定义存储位置以防 C 盘空间不足引发的问题[^3]。 综上所述,要成功激活 DeepSeek 中的 GPU 支持,不仅要在软件层面做好充分准备——即合理配置应用程序内部选项、妥善管理外部依赖包——同时也离不开硬件设施的支持与优化措施的应用,比如适时更新显卡固件等[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

My的梦想已实现

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值