aliceyangxi1987的博客

智能时代,做个终身学习者,持续迭代;公众号-极客X养成计划;简书-不会停的蜗牛...

TensorFlow-6-TensorBoard 可视化学习

学习资料:
https://www.tensorflow.org/get_started/summaries_and_tensorboard

中文翻译:
http://wiki.jikexueyuan.com/project/tensorflow-zh/how_tos/summaries_and_tensorboard.html

今天学的内容是 TensorBoard
它的作用就是可以把复杂的神经网络训练过程给可视化,可以更好地理解 调试 优化程序。

在之前的几节,我们都只是建立了模型,例如这个代码:
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/mnist/mnist_softmax.py

这一节我们我们可以把想看的东西显示出来,如 accuracy,cross entropy,bias 和 weights 等等。

先来看效果:

如下图,就可以在 Tensorboard 的 scalars 下看到 accuracy,cross entropy,dropout,layer1 和 layer2 的 bias 和 weights 的趋势


主要用到的了下面四个方法
其他可以看 Summary Operations:
https://www.tensorflow.org/api_guides/python/summary

  • tf.summary.scalar
  • tf.summary.histogram
  • tf.summary.merge_all
  • tf.summary.FileWriter

1. tf.summary.scalar

当你想知道 learning rate 如何变化时,目标函数如何变化时,就可以通过向节点附加 tf.summary.scalar 操作来分别输出学习速度和期望误差,可以给每个 scalary_summary 分配一个有意义的标签为 ‘learning rate’ 和 ‘loss function’,执行后就可以看到可视化的图表。

2. tf.summary.histogram

当你想看 activations, gradients 或者 weights 的分布时,可以用 tf.summary.histogram
如下图,显示了每一步的分布,越靠前面就是越新的步数的结果。

3. tf.summary.merge_all

在 TensorFlow 中,所有的操作只有当你执行,或者一个操作依赖于它的输出时才会运行。为了生成 summaries,我们需要运行所有 summary nodes,所以就用 tf.summary.merge_all 来将它们合并为一个操作,这样就可以产生所有的 summary data。

4. tf.summary.FileWriter

最后,为了将 summary data 写入磁盘,需要将 Summary protobuf 对象传递给 tf.summary.FileWriter。在这个造函数中包含了参数 logdir,这个 logdir 很重要,所有事件都会写到它所指的目录下。


那么上面的图是怎么产生的呢?

完整代码有点长,请前往链接:
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/mnist/mnist_with_summaries.py

如果是 mac 的话,可以在终端运行上述代码:

$ python mnist_with_summaries.py

然后就可以看到打印过程:

注意代码里将 log dir 定义为下面这个地址:

所以在打开 tensorboard 时,输入相应的位置:

$ tensorboard --logdir=/tmp/tensorflow/mnist/logs/mnist_with_summaries

输入上述命令后,会打印一个 IP 地址,在浏览器打开

这样,就可以看到 bar 上的几个板块了:

除上面几个外,还可以在 graphs 里可以看到 TensorFlow model。
更详细的可以查看:
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tensorboard


再聊细一点:

关于 scalars 的生成
代码中有这样几行:

      with tf.name_scope('weights'):
        weights = weight_variable([input_dim, output_dim])
        variable_summaries(weights)
      with tf.name_scope('biases'):
        biases = bias_variable([output_dim])
        variable_summaries(biases)

在这里对 wights 和 bias 作用了 variable_summaries
variable_summaries 里面有计算 mean,max,min,stddev 的 tf.summary.scalar 操作。

  def variable_summaries(var):
    """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
    with tf.name_scope('summaries'):
      mean = tf.reduce_mean(var)
      tf.summary.scalar('mean', mean)
      with tf.name_scope('stddev'):
        stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
      tf.summary.scalar('stddev', stddev)
      tf.summary.scalar('max', tf.reduce_max(var))
      tf.summary.scalar('min', tf.reduce_min(var))
      tf.summary.histogram('histogram', var)

执行后,就可以看到下图:

TensorFlow 系
TensorFlow-5: 用 tf.contrib.learn 来构建输入函数
TensorFlow-4: tf.contrib.learn 快速入门
TensorFlow-3: 用 feed-forward neural network 识别数字
TensorFlow-2: 用 CNN 识别数字
TensorFlow-1: 如何识别数字


推荐阅读
历史技术博文链接汇总
也许可以找到你想要的

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/aliceyangxi1987/article/details/70788202
个人分类: TensorFlow
所属专栏: TensorFlow
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭