混合A*运动规划算法:路径规划和路径跟踪-MPC-LQR-PID算法

本文介绍了自动驾驶车辆的运动规划,重点讨论了混合A*算法,一种结合在线障碍物检测的路径规划方法,以及线性模型预测控制和LQR+PID控制器在路径跟踪中的应用,展示了如何在复杂环境中实现有效的路径规划和车辆控制。
摘要由CSDN通过智能技术生成

用于自动驾驶车辆的运动规划算法包括路径规划和路径跟踪。

  • 路径规划(Path Planning):路径规划是指在给定地图和起始点到目标点的情况下,确定车辆应该采取的最佳路径。常见的路径规划算法包括
    A* 算法、Dijkstra 算法、RRT(Rapidly-exploring Random Tree)等。

  • 路径跟踪(Path
    Tracking):路径跟踪是指车辆在实际行驶过程中,根据预先规划好的路径进行控制,使车辆能够沿着设定的路径行驶。常见的路径跟踪算法包括基于模型的控制方法(如PID控制器)、模型预测控制(Model
    Predictive Control, MPC)等。
    在这里插入图片描述

混合A*

  • 我们描述了一种实用的路径规划算法,为在未知环境中运行的自动驾驶车辆生成平滑的路径。
  • 该算法通过机器人的传感器在线检测障碍物。这项工作是受到2007年DARPA城市挑战赛的启发,并在该比赛中进行了实验验证,其中机器人车辆必须自主导航停车场。
  • 我们的方法包括两个主要步骤。第一步使用变体的著名A搜索算法,应用于车辆的三维运动状态空间,但采用修改后的状态更新规则,将车辆的连续状态捕捉到A的离散节点中(从而保证路径的运动可行性).
  • 然后,第二步通过数值非线性优化改进解决方案的质量,得到局部(经常是全局)最优解。
  • 本文描述的路径规划算法被斯坦福赛车队的机器人Junior在城市挑战赛中使用。Junior在复杂的一般路径规划任务中表现出色,如导航停车场和在封闭道路上执行U型转弯,典型的完整循环重规划时间为50-300ms

在这里插入图片描述

线性模型预测控制(Linear Model Predictive Control,简称LMPC)

  • 算法是一种基于模型预测的控制算法,用于解决连续状态和动作空间下的轨迹跟踪问题。该算法将轨迹跟踪问题转化为一个优化问题,通过优化控制序列来最小化当前状态与目标状态之间的误差。
  • LMPC算法的基本思想是构建一个线性动态系统模型,并使用该模型进行多步预测。在每个时间步长,LMPC算法使用预测结果计算一个最优的控制序列,执行第一个控制动作,并重新计算当前状态。然后,算法采用新的当前状态和控制序列重新计算多步预测,并重复这个过程直到到达目标状态为止。
  • LMPC算法的优点是可以处理非线性和非光滑的运动模式,并且可以在不同的环境中适应不同的控制任务。然而,由于LMPC算法需要在线解决一个优化问题,因此计算开销较大,并且需要足够快的计算速度以保证实时性。
    在这里插入图片描述

LQR与Pid

  • LQR(Linear Quadratic
    Regulator)是一种经典的线性控制器设计方法,用于设计连续状态空间下的最优反馈控制器。而PID(Proportional-Integral-Derivative)是一种常见的经典控制器,用于处理简单的线性和部分非线性控制问题。
  • LQR +
    PID算法是将LQR和PID两种控制器结合起来使用的一种控制策略。该算法的基本思想是使用LQR控制器来提供系统的快速稳定性和优化性能,同时使用PID控制器来处理系统的静态偏差和纠正快速变化的扰动。
  • 具体来说,LQR控制器通过优化系统的状态反馈增益矩阵,使系统的性能指标最小化。这种最优化的设计使得LQR控制器能够在系统响应速度和稳定性之间找到一个平衡点。
  • 然而,LQR控制器通常无法完全消除系统的静态偏差,而且对于快速变化的扰动响应不够灵敏。为了解决这些问题,PID控制器可以添加到LQR控制器中。PID控制器可以根据系统误差的比例、积分和导数来调整控制信号,以实现更好的静态补偿和快速扰动响应。
    在这里插入图片描述

通过将LQR和PID控制器结合起来,LQR + PID算法可以综合利用两者的优点,提供更快的响应速度、更好的稳定性和更好的静态补偿能力。

混合A star 代码

def calc_rs_path_cost(rspath):
    cost = 0.0

    for lr in rspath.lengths:
        if lr >= 0:
            cost += 1
        else:
            cost += abs(lr) * C.BACKWARD_COST

    for i in range(len(rspath.lengths) - 1):
        if rspath.lengths[i] * rspath.lengths[i + 1] < 0.0:
            cost += C.GEAR_COST

    for ctype in rspath.ctypes:
        if ctype != "S":
            cost += C.STEER_ANGLE_COST * abs(C.MAX_STEER)

    nctypes = len(rspath.ctypes)
    ulist = [0.0 for _ in range(nctypes)]

    for i in range(nctypes):
        if rspath.ctypes[i] == "R":
            ulist[i] = -C.MAX_STEER
        elif rspath.ctypes[i] == "WB":
            ulist[i] = C.MAX_STEER

    for i in range(nctypes - 1):
        cost += C.STEER_CHANGE_COST * abs(ulist[i + 1] - ulist[i])

    return cost


def calc_hybrid_cost(node, hmap, P):
    cost = node.cost + \
           C.H_COST * hmap[node.xind - P.minx][node.yind - P.miny]

    return cost


def calc_motion_set():
    s = np.arange(C.MAX_STEER / C.N_STEER,
                  C.MAX_STEER, C.MAX_STEER / C.N_STEER)

    steer = list(s) + [0.0] + list(-s)
    direc = [1.0 for _ in range(len(steer))] + [-1.0 for _ in range(len(steer))]
    steer = steer + steer

    return steer, direc


def is_same_grid(node1, node2):
    if node1.xind != node2.xind or \
            node1.yind != node2.yind or \
            node1.yawind != node2.yawind:
        return False

    return True


def calc_index(node, P):
    ind = (node.yawind - P.minyaw) * P.xw * P.yw + \
          (node.yind - P.miny) * P.xw + \
          (node.xind - P.minx)

    return ind


def calc_parameters(ox, oy, xyreso, yawreso, kdtree):
    minx = round(min(ox) / xyreso)
    miny = round(min(oy) / xyreso)
    maxx = round(max(ox) / xyreso)
    maxy = round(max(oy) / xyreso)

    xw, yw = maxx - minx, maxy - miny

    minyaw = round(-C.PI / yawreso) - 1
    maxyaw = round(C.PI / yawreso)
    yaww = maxyaw - minyaw

    return Para(minx, miny, minyaw, maxx, maxy, maxyaw,
                xw, yw, yaww, xyreso, yawreso, ox, oy, kdtree)

线性LQR控制代码

class TrajectoryAnalyzer:
    def __init__(self, x, y, yaw, k):
        self.x_ = x
        self.y_ = y
        self.yaw_ = yaw
        self.k_ = k

        self.ind_old = 0
        self.ind_end = len(x)

    def ToTrajectoryFrame(self, vehicle_state):
        """
        errors to trajectory frame
        theta_e = yaw_vehicle - yaw_ref_path
        e_cg = lateral distance of center of gravity (cg) in frenet frame
        :param vehicle_state: vehicle state (class VehicleState)
        :return: theta_e, e_cg, yaw_ref, k_ref
        """

        x_cg = vehicle_state.x
        y_cg = vehicle_state.y
        yaw = vehicle_state.yaw

        # calc nearest point in ref path
        dx = [x_cg - ix for ix in self.x_[self.ind_old: self.ind_end]]
        dy = [y_cg - iy for iy in self.y_[self.ind_old: self.ind_end]]

        ind_add = int(np.argmin(np.hypot(dx, dy)))
        dist = math.hypot(dx[ind_add], dy[ind_add])

        # calc lateral relative position of vehicle to ref path
        vec_axle_rot_90 = np.array([[math.cos(yaw + math.pi / 2.0)],
                                    [math.sin(yaw + math.pi / 2.0)]])

        vec_path_2_cg = np.array([[dx[ind_add]],
                                  [dy[ind_add]]])

        if np.dot(vec_axle_rot_90.T, vec_path_2_cg) > 0.0:
            e_cg = 1.0 * dist  # vehicle on the right of ref path
        else:
            e_cg = -1.0 * dist  # vehicle on the left of ref path

        # calc yaw error: theta_e = yaw_vehicle - yaw_ref
        self.ind_old += ind_add
        yaw_ref = self.yaw_[self.ind_old]
        theta_e = pi_2_pi(yaw - yaw_ref)

        # calc ref curvature
        k_ref = self.k_[self.ind_old]

        return theta_e, e_cg, yaw_ref, k_ref


class LatController:
    """
    Lateral Controller using LQR
    """

    def ComputeControlCommand(self, vehicle_state, ref_trajectory):
        """
        calc lateral control command.
        :param vehicle_state: vehicle state
        :param ref_trajectory: reference trajectory (analyzer)
        :return: steering angle (optimal u), theta_e, e_cg
        """

        ts_ = ts
        e_cg_old = vehicle_state.e_cg
        theta_e_old = vehicle_state.theta_e

        theta_e, e_cg, yaw_ref, k_ref = \
            ref_trajectory.ToTrajectoryFrame(vehicle_state)

        matrix_ad_, matrix_bd_ = self.UpdateMatrix(vehicle_state)

        matrix_state_ = np.zeros((state_size, 1))
        matrix_r_ = np.diag(matrix_r)
        matrix_q_ = np.diag(matrix_q)

        matrix_k_ = self.SolveLQRProblem(matrix_ad_, matrix_bd_, matrix_q_,
                                         matrix_r_, eps, max_iteration)

        matrix_state_[0][0] = e_cg
        matrix_state_[1][0] = (e_cg - e_cg_old) / ts_
        matrix_state_[2][0] = theta_e
        matrix_state_[3][0] = (theta_e - theta_e_old) / ts_

        steer_angle_feedback = -(matrix_k_ @ matrix_state_)[0][0]

        steer_angle_feedforward = self.ComputeFeedForward(k_ref)

        steer_angle = steer_angle_feedback + steer_angle_feedforward

        return steer_angle, theta_e, e_cg

最后,↓↓↓看下面推广

  • 27
    点赞
  • 53
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 5
    评论
PIDLQR 和 MPC 是控制系统中常用的三种算法,它们都有自己的优缺点,适用于不同的控制场景。 1. PID 控制 PID 控制是最常见的一种控制算法,该算法通过对系统输出与期望输入之间的误差进行比较,计算出一个控制量来调整系统的输出。PID 控制算法简单易懂,可以应用于很多控制场景,并且很容易实现。 然而,PID 控制算法的缺点也很明显,它只能根据当前的误差来进行调整,对于未来的变化无法进行预测,因此 PID 控制很难应对复杂的非线性系统和时变系统。 2. LQR 控制 LQR 控制是一种基于状态空间模型的线性控制算法,该算法通过最小化系统状态与期望状态之间的二次误差来设计控制器。相比于 PID 控制,LQR 控制可以应对更加复杂的系统,并且可以进行状态估计和状态反馈控制。 然而,LQR 控制也有自己的缺点,它只适用于线性系统,对于非线性系统的控制效果不佳。 3. MPC 控制 MPC 控制是一种基于模型预测的控制算法,该算法通过对未来一段时间内系统状态的预测来计算出最优的控制量。MPC 控制算法可以应对非线性系统和时变系统,并且可以对控制输出进行约束,保证系统的安全性。 MPC 控制算法也有缺点,它需要系统模型的准确性和高计算能力,因此实现起来比较困难。 总的来说,PID 控制算法适用于简单的控制场景,LQR 控制算法适用于线性系统,MPC 控制算法适用于复杂的非线性系统和时变系统。在实际应用中,需要根据具体情况选择适合的控制算法
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿利同学

一角两角不嫌少

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值