实战:战狼2票房数据分析——(2)票房数据构造及保存

前言

前面构造了movieList数据集,但对于我们人为的去读取不是很友好,所以我们将调整其存放格式,并保存为csv文件。


数据构造

从movieList的结构我们可以看出,它是一个有元组构成的列表,为了方便查看我们将让他存储为DataFrame,并以日期作为索引。

新增一个构造DataFrame的方法,参数为movieList和日期:

def buildDataFrame(movieList, date):
    index = [date for i in range(len(movieList))]
    df = pd.DataFrame(movieList, columns=['name', 'box', 'boxRatio', 'playRatio', 'attendance'], index=index)
    df['box'] = df['box'].astype('float64')
    return df

再执行看一下效果

if __name__ == "__main__":
    data = getData(url)
    html = getHtml(data)
    movieList = parseHtml(html)
    df = buildDataFrame(movieList, '2017-08-01')
    print df

输出结果为

In [92]: runfile('C:/Users/Administrator/.spyder2/temp.py', wdir='C:/Users/Administrator/.spyder2')
                    name       box boxRatio playRatio attendance
2017-08-01           战狼2  29249.43    86.3%     56.4%      42.4%
2017-08-01          建军大业   3248.29     9.6%     22.3%      19.3%
2017-08-01         神偷奶爸3    464.67     1.4%      4.7%      13.7%
2017-08-01   大耳朵图图之美食狂想曲    225.61     0.7%      3.9%      10.0%
2017-08-01    绣春刀II:修罗战场    186.07     0.5%      3.0%      11.4%
2017-08-01          闪光少女    137.56     0.4%      1.4%      15.6%
2017-08-01           悟空传    130.83     0.4%      2.2%      10.2%
2017-08-01           豆福传     66.90     0.2%      2.8%       6.9%
2017-08-01          父子雄兵     44.96     0.1%      0.9%      11.4%
2017-08-01           大护法     29.90     0.1%      0.4%      10.5%
2017-08-01          阿唐奇遇     23.77     0.1%      0.5%       9.8%
2017-08-01          夜半凶铃     17.66     0.1%      0.7%       9.1%
2017-08-01          血战湘江     17.26     0.1%      0.0%      64.3%
2017-08-01       京城81II      9.74     0.0%      0.2%       9.3%
2017-08-01  绿野仙踪之奥兹国奇幻之旅      7.40     0.0%      0.2%       6.9%
2017-08-01         深夜食堂2      7.34     0.0%      0.1%      12.1%
2017-08-01      地球:神奇的一天      4.25     0.0%      0.0%       100%
2017-08-01          冈仁波齐      4.04     0.0%      0.1%      12.2%
2017-08-01           李三娘      2.26     0.0%      0.0%      70.2%
2017-08-01           喵星人      2.06     0.0%      0.1%      10.1%
2017-08-01            战狼      1.75     0.0%      0.0%       5.5%
2017-08-01           鲛珠传      1.73     0.0%      0.0%       100%
2017-08-01         阳光萌星社      1.64     0.0%      0.0%      69.4%
2017-08-01         我是马布里      1.60     0.0%      0.0%      76.7%
2017-08-01         重返·狼群      1.59     0.0%      0.0%       9.5%

我们可以看到,这种展示对于我们来说就非常友好了。

我们尝试找一下2017-08-01当天票房超过100W的电影

In [93]: df[df.box > 100]
Out[93]: 
                   name       box boxRatio playRatio attendance
2017-08-01          战狼2  29249.43    86.3%     56.4%      42.4%
2017-08-01         建军大业   3248.29     9.6%     22.3%      19.3%
2017-08-01        神偷奶爸3    464.67     1.4%      4.7%      13.7%
2017-08-01  大耳朵图图之美食狂想曲    225.61     0.7%      3.9%      10.0%
2017-08-01   绣春刀II:修罗战场    186.07     0.5%      3.0%      11.4%
2017-08-01         闪光少女    137.56     0.4%      1.4%      15.6%
2017-08-01          悟空传    130.83     0.4%      2.2%      10.2%

获取多天数据

时间参数化

为了获取多天数据,我们就需要将url中的日期参数进行参数化传入。

修改我们的getData方法,并将名字改为getDataByDate:

def getDataByDate(date):

    url = 'https://piaofang.maoyan.com/dayoffice?date=%s&cnt=10' % date

    headers={
        "authority": "piaofang.maoyan.com",
        "method": "GET",
        "path": "/dayoffice?date=%s&cnt=10" % date,
        "scheme": "https",
        "accept": "*/*",
        "accept-encoding": "gzip, deflate, br",
        "accept-language": "zh-CN,zh;q=0.8",
        "referer": "https://piaofang.maoyan.com/?date=%s" % date,
        "uid": "e4e5902fc42ad5e198b207d76af1d82e7056cb82",
        "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
        "x-requested-with": "XMLHttpRequest"
    }
    req = requests.get(url, headers=headers)
    return req.content

然后我们获取2017-08-02的数据

if __name__ == "__main__":
    day = '2017-08-02'
    data = getDataByDate(day)
    html = getHtml(data)
    movieList = parseHtml(html)
    df = buildDataFrame(movieList, day)
    print df

输出结果为:

In [107]: runfile('C:/Users/Administrator/.spyder2/temp.py', wdir='C:/Users/Administrator/.spyder2')
                    name       box boxRatio playRatio attendance
2017-08-02           战狼2  27898.31    88.8%     59.1%      39.2%
2017-08-02          建军大业   2229.18     7.1%     20.4%      15.5%
2017-08-02         神偷奶爸3    431.69     1.4%      4.8%      12.8%
2017-08-02   大耳朵图图之美食狂想曲    203.25     0.6%      3.8%       9.4%
2017-08-02    绣春刀II:修罗战场    168.69     0.5%      2.8%      11.3%
2017-08-02          闪光少女    122.52     0.4%      1.4%      14.4%
2017-08-02           悟空传    108.73     0.3%      2.0%       9.6%
2017-08-02           豆福传     59.12     0.2%      2.5%       7.0%
2017-08-02          父子雄兵     41.56     0.1%      0.8%      11.9%
2017-08-02          血战湘江     27.31     0.1%      0.0%      61.7%
2017-08-02           大护法     25.56     0.1%      0.4%      10.3%
2017-08-02          阿唐奇遇     21.95     0.1%      0.5%       8.5%
2017-08-02          夜半凶铃     15.29     0.0%      0.6%       9.3%
2017-08-02       京城81II      8.72     0.0%      0.2%       8.4%
2017-08-02         皮绳上的魂      7.07     0.0%      0.0%      99.2%
2017-08-02  绿野仙踪之奥兹国奇幻之旅      5.30     0.0%      0.2%       6.3%
2017-08-02         我是马布里      4.38     0.0%      0.0%      93.1%
2017-08-02         深夜食堂2      4.31     0.0%      0.1%       9.5%
2017-08-02          冈仁波齐      4.25     0.0%      0.1%      13.0%
2017-08-02           李三娘      3.86     0.0%      0.0%      69.3%
2017-08-02         阳光萌星社      2.30     0.0%      0.0%      65.6%
2017-08-02           喵星人      2.25     0.0%      0.1%      13.1%
2017-08-02           破·局      1.93     0.0%      0.0%      75.2%
2017-08-02           龙之战      1.52     0.0%      0.0%      98.0%
2017-08-02         重返·狼群      1.46     0.0%      0.0%      10.3%
2017-08-02            战狼      1.37     0.0%      0.0%       1.7%
2017-08-02         穆桂英挂帅      1.12     0.0%      0.0%       100%

获取时间范围数据

现在获取特定日期的数据已经实现了,那么我们再进一步抽象和封装,可以获取指定时间范围的数据

增加一个方法用于构造日期的列表

from datetime import date, timedelta

def buildDates(start, days):
    day = timedelta(days=1)
    for i in range(days):
        yield start + day*i

将原来main函数里的执行逻辑进行封装,封装为一个新的getData方法,用于获取指定日期范围内的所有数据

def getData(Y, M, D, days):    
    start = date(Y, M, D)
    df = pd.DataFrame()
    for d in buildDates(start, days):
        day = str(d)
        data = getDataByDate(day)
        html = getHtml(data)
        movieList = parseHtml(html)
        temp = buildDataFrame(movieList, day)
        df = df.append(temp)
    return df

在主函数里执行下看看效果,获取从2017-08-01至2017-08-03的数据:

if __name__ == "__main__":
    df = getData(2017, 8, 1, 3)
    print df

执行结果如下:

runfile('C:/Users/Administrator/.spyder2/temp.py', wdir='C:/Users/Administrator/.spyder2')
                    name       box boxRatio playRatio attendance
2017-08-01           战狼2  29249.43    86.3%     56.4%      42.4%
2017-08-01          建军大业   3248.29     9.6%     22.3%      19.3%
2017-08-01         神偷奶爸3    464.67     1.4%      4.7%      13.7%
2017-08-01   大耳朵图图之美食狂想曲    225.61     0.7%      3.9%      10.0%
2017-08-01    绣春刀II:修罗战场    186.07     0.5%      3.0%      11.4%
2017-08-01          闪光少女    137.56     0.4%      1.4%      15.6%
2017-08-01           悟空传    130.83     0.4%      2.2%      10.2%
2017-08-01           豆福传     66.90     0.2%      2.8%       6.9%
2017-08-01          父子雄兵     44.96     0.1%      0.9%      11.4%
2017-08-01           大护法     29.90     0.1%      0.4%      10.5%
2017-08-01          阿唐奇遇     23.77     0.1%      0.5%       9.8%
2017-08-01          夜半凶铃     17.66     0.1%      0.7%       9.1%
2017-08-01          血战湘江     17.26     0.1%      0.0%      64.3%
2017-08-01       京城81II      9.74     0.0%      0.2%       9.3%
2017-08-01  绿野仙踪之奥兹国奇幻之旅      7.40     0.0%      0.2%       6.9%
2017-08-01         深夜食堂2      7.34     0.0%      0.1%      12.1%
2017-08-01      地球:神奇的一天      4.25     0.0%      0.0%       100%
2017-08-01          冈仁波齐      4.04     0.0%      0.1%      12.2%
2017-08-01           李三娘      2.26     0.0%      0.0%      70.2%
2017-08-01           喵星人      2.06     0.0%      0.1%      10.1%
2017-08-01            战狼      1.75     0.0%      0.0%       5.5%
2017-08-01           鲛珠传      1.73     0.0%      0.0%       100%
2017-08-01         阳光萌星社      1.64     0.0%      0.0%      69.4%
2017-08-01         我是马布里      1.60     0.0%      0.0%      76.7%
2017-08-01         重返·狼群      1.59     0.0%      0.0%       9.5%
2017-08-02           战狼2  27898.31    88.8%     59.1%      39.2%
2017-08-02          建军大业   2229.18     7.1%     20.4%      15.5%
2017-08-02         神偷奶爸3    431.69     1.4%      4.8%      12.8%
2017-08-02   大耳朵图图之美食狂想曲    203.25     0.6%      3.8%       9.4%
2017-08-02    绣春刀II:修罗战场    168.69     0.5%      2.8%      11.3%
...                  ...       ...      ...       ...        ...
2017-08-02           龙之战      1.52     0.0%      0.0%      98.0%
2017-08-02         重返·狼群      1.46     0.0%      0.0%      10.3%
2017-08-02            战狼      1.37     0.0%      0.0%       1.7%
2017-08-02         穆桂英挂帅      1.12     0.0%      0.0%       100%
2017-08-03           战狼2  22786.77    54.7%     44.7%      43.4%
2017-08-03      三生三世十里桃花  16933.81    40.7%     32.2%      43.7%
2017-08-03          建军大业   1186.55     2.8%     10.2%      16.7%
2017-08-03         神偷奶爸3    259.93     0.6%      3.2%      10.4%
2017-08-03   大耳朵图图之美食狂想曲    134.45     0.3%      2.4%       9.1%
2017-08-03          闪光少女     58.17     0.1%      0.7%      11.8%
2017-08-03    绣春刀II:修罗战场     53.99     0.1%      1.1%       8.6%
2017-08-03          谁是球王     51.46     0.1%      2.0%      28.5%
2017-08-03           心理罪     33.21     0.1%      0.0%      88.4%
2017-08-03           豆福传     26.74     0.1%      1.2%       5.7%
2017-08-03           悟空传     26.13     0.1%      0.7%       7.0%
2017-08-03          血战湘江     24.51     0.1%      0.0%      49.9%
2017-08-03          阿唐奇遇     12.50     0.0%      0.3%       7.8%
2017-08-03          父子雄兵     11.56     0.0%      0.3%       8.8%
2017-08-03           大护法     10.00     0.0%      0.2%       8.0%
2017-08-03          夜半凶铃      7.45     0.0%      0.3%       8.0%
2017-08-03         我是马布里      6.35     0.0%      0.0%      41.6%
2017-08-03           李三娘      3.60     0.0%      0.0%       0.0%
2017-08-03  绿野仙踪之奥兹国奇幻之旅      3.01     0.0%      0.1%       5.5%
2017-08-03         阳光萌星社      2.69     0.0%      0.0%      66.2%
2017-08-03       京城81II      2.15     0.0%      0.1%       9.1%
2017-08-03          冈仁波齐      1.94     0.0%      0.0%      10.0%
2017-08-03         深夜食堂2      1.45     0.0%      0.0%       8.6%
2017-08-03            战狼      1.19     0.0%      0.0%       4.7%
2017-08-03           喵星人      1.17     0.0%      0.0%      19.8%
2017-08-03         重返·狼群      1.10     0.0%      0.0%      11.7%

[78 rows x 5 columns]

保存为csv文件

将DataFrame保存为CSV文件很简单,直接使用DataFrame中的方法to_csv就行

def writeToCSV(df, path):
    df.to_csv(path)

主函数内调用该方法,将三天的数据存入csv文件中

if __name__ == "__main__":
    df = getData(2017, 8, 1, 3)
    writeToCSV(df, 'data\out.csv')

执行完成后可以看到指定目录下,新增了out.csv文件,打开后可以看到我们的数据都被存入了。

这里写图片描述


完整代码

为了后面好操作,已将占比都改为了数字,本节完整代码如下:

#-*- coding: utf-8 -*-

import json
import re
import requests
import pandas as pd
from datetime import date, timedelta

def getHtml(jsonData):
    data = json.loads(jsonData)
    return data['ticketList'].encode('utf-8').replace('\n', '').replace(' ','')

def parseHtml(html):
    reg = r"<ul.+?><liclass='c1'><b>(.+?)</b>.+?</li>"
    reg += r"<liclass=\"c2\"><b>(.+?)</b>.+?</li>"
    reg += r"<liclass=\"c3\">(.+?)%</li>"
    reg += r"<liclass=\"c4\">(.+?)%</li>"
    reg += r"<liclass=\"c5\"><spanstyle=\"margin-right:-.1rem\">(.+?)%</span>"

    pattern = re.compile(reg)
    movieList = re.findall(pattern, html)

    return movieList


def getDataByDate(date):    
    url = 'https://piaofang.maoyan.com/dayoffice?date=%s&cnt=10' % date

    headers={
        "authority": "piaofang.maoyan.com",
        "method": "GET",
        "path": "/dayoffice?date=%s&cnt=10" % date,
        "scheme": "https",
        "accept": "*/*",
        "accept-encoding": "gzip, deflate, br",
        "accept-language": "zh-CN,zh;q=0.8",
        "referer": "https://piaofang.maoyan.com/?date=%s" % date,
        "uid": "e4e5902fc42ad5e198b207d76af1d82e7056cb82",
        "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
        "x-requested-with": "XMLHttpRequest"
    }
    req = requests.get(url, headers=headers)
    return req.content

def buildDataFrame(movieList, date):
    index = [date for i in range(len(movieList))]
    df = pd.DataFrame(movieList, columns=['name', 'box', 'boxRatio', 'playRatio', 'attendance'], index=index)
    df['box'] = df['box'].astype('float64')
    df['boxRatio'] = df['boxRatio'].astype('float64')
    df['playRatio'] = df['playRatio'].astype('float64')
    df['attendance'] = df['attendance'].astype('float64')
    return df

def buildDates(start, days):
    day = timedelta(days=1)
    for i in range(days):
        yield start + day*i

def getData(Y, M, D, days):    
    start = date(Y, M, D)
    df = pd.DataFrame()
    for d in buildDates(start, days):
        day = str(d)
        data = getDataByDate(day)
        html = getHtml(data)
        movieList = parseHtml(html)
        temp = buildDataFrame(movieList, day)
        df = df.append(temp)
    return df

def writeToCSV(df, path):
    df.to_csv(path)

if __name__ == "__main__":
    df = getData(2017, 8, 1, 3)
    print df
    writeToCSV(df, 'data\out.csv')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值