1.一维情景
- 给定一条曲线
- 目的:寻找当θ为何值时,f(θ)=0
- 公式推导如下:
- f ′ (θ)=f(θ (0) )△
- △=f(θ (0) )f ′ (0)
- θ (1) =θ (0) −f(θ (0) )f ′ (0)
- 所以推导到t的情况,一般公式为:
- θ (t+1) =θ (t) −f(θ (t) )f ′ (t)
- 此上推导为牛顿的一次迭代
- 牛顿方法是一个收敛速度比较快的算法
2.二维情景
- θ (t+1) =θ (t) −H −1 ▽ e l
- H为Hessian为一个n*n的矩阵
- 缺点为每次迭代都需要求取一个Hessian矩阵的逆,对于一些特征量合理的算法而言,是一个比较快的算法;但是一旦特征值较多,每一次求逆都需要大量的计算
16:00‘提到的问题
3.广义线性模型(GLM)
1.指数分布族
- P(y|x;θ)
- ① y∈R 并且满足高斯分布(Gaussian distribution )得到了基于最小二乘法的线性回归
- ②y∈{0,1} 0-1分布,即是伯努利分布(Bernoulli ) 得到了logistic回归
- sigmoid函数是一个可以引出logistic回归的最为自然的默认选择
- P(y=1;φ)=φ
- 高斯分布 N(μ,σ 2 )
- 以上两种分布都是一类分布的特例,叫做指数分布族
- P(y,η)=b(y)exp(η T T(y)−a(η))
- 说明:
- η—自然参数(natural parameter)
- T(y)—充分统计量(sufficient statistic)
- a,b.T的形式,当选取不同的η,会得到不同的概率,选取特定的a,b,T会得到上述的两种模型
2.伯努利分布
- Ber(φ)
P(y=1;φ) = φ
P(y;φ)
= φ y (1−φ) 1−y
= exp(logφ y (1−φ) 1−y )
= exp(ylogφ+(1−y)log(1−φ))
= exp(ylogφ1−φ +log(1−φ))
- η=logφ1−φ ①
- 将公式颠倒过来得到
- φ=11+e −η ②
- 通过了公式①奇迹的得到了logistic函数
a(η)=−log(1−φ)=log(1+e η )
T(y)=y
b(y)=1
以上得到了a,b,T,指数分布族特殊化情景
3.高斯分布
- N(μ,σ 2 )
- 设定
σ 2 =1
12π √ exp(−12 (y−μ) 2 )
= 12π √ exp(−12 )y 2 exp(μy+12 μ 2 ))
经过以上推导得到了a,b,T
b(y)=12π √ exp(−12 )y 2
T(y)=y
a(η)=−12 μ 2
4.其它
- ⑴泊松分布(Poisson distribution)
- 计数建模—放射性衰变的数目,网站的访客数量,商店的顾客数量…
- ⑵伽马分布(gamma)和指数分布(exponential)
- 间隔建模—车站问题
- 下一辆车可能什么时候到?
- 我的车到达还要多少时间?
- ⑶β分布和Dirichlet分布
- 小数建模
- ⑷Wishart分布—协方差矩阵的分布
…
5.GLM
假设:
⑴y|x; θ ~ ExpFamily | η—(已η为自然参数的意思)
⑵给定x,目标为输出为E[ T( y)| x ]—T(y)为充分统计量
⑶想要达成 h(x)=E[ T( y)| x ]
⑷
η=θ T x
伯努利:
h θ (x)=E(y|x;θ)=P(y=1|x;θ)=φ
φ=11+e −η
根据假设4而言,得到最终结果:
φ=11+e −θ T x
正则响应函数:
g(η)=E[y;η]=11+e −η
正则关联函数:
g −1
6.多项式分布(Multinomial)
y∈{1,…,k}
1.φ参数
φ 1 ,φ 2 ,φ 3 ...φ k
P(y=i)=φ i
因为
φ k =1−(φ 1 +φ 2 ...φ k−1 )
所以参数设定:
φ 1 ,φ 2 ,φ 3 ...φ k−1
2.T的定义
T∈ R k−1
I{True}=1
I{False}=0
I{2=3}=0
I{1+1=2}=1
即:
T(y) i =I{y=i}
P(y)=φ I{y=1} 1 φ I{y=2} 2 ...φ I{y=k} k
= φ T(y) 1 1 φ T(y) 2 2 ...φ T(y) k−1 k−1 φ 1−∑ k−1 1 T(y) j k
…
= b(y)exp(η T T(y)−a(η))
η是一个向量
a(η)=−log(φ k )
b(y)=1
φ i =e η i 1+∑ k−1 1 e η j
η i =θ T i x
这里就懒得代入公式了,手写的公式真烦…
- softmax regression是logistic regression的推广