文章目录
1. image_dataset_from_directory
官方API 文档 : tf.keras.utils.image_dataset_from_directory
下图代码展示了从data/minist_subfolders/下面读取image的过程。
labels:'inferred’指的是自动从文件目录加载label。这里拿Mnist数据集举例
img_height = 28
img_width = 28
batch_size = 32
ds_train = tf.keras.utils.image_dataset_from_directory(
'data/minist_subfolders/',
labels='inferred',
label_mode= "int", #categorical, binary
# class_names = ['0','1','2','3'],
color_mode = 'grayscale',
batch_size = batch_size,
image_size = (img_height, img_width),
shuffle=True,
seed=123,
validation_split = 0.1,
subset="training",
)
用法
tf.keras.utils.image_dataset_from_directory(
directory, labels=‘inferred’, label_mode=‘int’,
class_names=None, color_mode=‘rgb’, batch_size=32, image_size=(256,
256), shuffle=True, seed=None, validation_split=None, subset=None,
interpolation=‘bilinear’, follow_links=False,
crop_to_aspect_ratio=False, **kwargs
)
参数
-
directory 数据所在的目录。如果labels是"inferred",它应该包含子目录,每个子目录都包含一个类的图像。否则,目录结构将被忽略。
-
labels “inferred”(从目录结构生成标签)、None(无标签)或与目录中找到的图像文件数量相同大小的整数标签列表/元组。标签应根据图像文件路径的字母数字顺序排序(通过Python 中的os.walk(directory) 获得)。