【系列论文研读】Pose Estimation

本文主要探讨了姿态估计的问题定义,介绍了两种主要方法:自顶向下和自底向上,并详细阐述了几篇重要的论文,包括DeepPose、Stacked Hourglass Networks、Convolutional Part Heatmap Regression、FAN、CPN以及Fast Human Pose Estimation。这些工作通过深度神经网络解决关节定位挑战,提出了联合回归、多层网络结构和注意力机制等创新技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Human Pose Estimation

一、Definition:

  • defined as the problem of localization of human joints
  • challenges of this problem – strong articulations, small and barely visible joints

 

二、Two methods:

  1. Top-downLocate Person -> Locate Joints
  2. Bottom-up Locate All Joints -> which person

 

Paper

一、DeepPosecvpr2014

TitleDeepPose: Human Pose Estimation via Deep Neural Networks

AuthorAlexander Toshev, Christian Szegedy (Google)

Main contributions:

1、formulate the pose estimation as a joint regression problem

              Using the entire image as input for each joint.

2、propose a cascade of DNN-based pose predictors

 

Method:

pose vector:

A labeled image:

Normalize the joint coordinates to

### Mamba框架用于计算机视觉中的姿态估计 Mamba是一个专注于加速机器学习和深度学习工作流程的工具集,在处理诸如人体姿态估计的任务时能够提供高效的支持。对于2D计算机视觉领域的人体姿态估计,通常涉及通过神经网络预测图像中人物的关键点位置[^1]。 #### 安装与配置 为了使用Mamba进行开发,首先需要安装该环境管理器以及必要的依赖库: ```bash conda install mamba -c conda-forge mamba create -n pose_estimation python=3.9 pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch -c nvidia ``` 这会创建一个新的虚拟环境中包含PyTorch和其他所需组件来支持GPU计算能力。 #### 数据准备 在开始训练之前,准备好适当的数据集非常重要。常用的数据集如COCO keypoints dataset包含了大量标注好的图片,可用于训练模型识别不同姿势下的身体部位。 #### 模型选择与实现 针对姿态估计任务可以选择预训练过的HRNet (High-Resolution Network),它特别适合于保持高分辨率特征图从而提高定位精度。下面给出一段简单的代码片段展示如何加载并微调这样一个模型: ```python import torch from hrnet import HRNet # 假设已经定义好了HRNet类 model = HRNet() checkpoint = torch.load('path_to_pretrained_model.pth') model.load_state_dict(checkpoint['state_dict']) # 将模型设置为评估模式 model.eval() def predict_keypoints(image_tensor): with torch.no_grad(): output = model(image_tensor.unsqueeze(0)) return output.squeeze().cpu().numpy() # 返回预测得到的关键点坐标 ``` 上述代码展示了基于已有的HRNet架构来进行推理的过程;实际应用中可能还需要进一步调整参数以适应特定需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值