【系列论文研读】Pose Estimation

本文主要探讨了姿态估计的问题定义,介绍了两种主要方法:自顶向下和自底向上,并详细阐述了几篇重要的论文,包括DeepPose、Stacked Hourglass Networks、Convolutional Part Heatmap Regression、FAN、CPN以及Fast Human Pose Estimation。这些工作通过深度神经网络解决关节定位挑战,提出了联合回归、多层网络结构和注意力机制等创新技术。
摘要由CSDN通过智能技术生成

Human Pose Estimation

一、Definition:

  • defined as the problem of localization of human joints
  • challenges of this problem – strong articulations, small and barely visible joints

 

二、Two methods:

  1. Top-downLocate Person -> Locate Joints
  2. Bottom-up Locate All Joints -> which person

 

Paper

一、DeepPosecvpr2014

TitleDeepPose: Human Pose Estimation via Deep Neural Networks

AuthorAlexander Toshev, Christian Szegedy (Google)

Main contributions:

1、formulate the pose estimation as a joint regression problem

              Using the entire image as input for each joint.

2、propose a cascade of DNN-based pose predictors

 

Method:

pose vector:

A labeled image:

Normalize the joint coordinates to

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值