How to learn from unlabeled volume data: Self-Supervised 3D Context Feature Learning
Author:Maximilian Blendowski(University of L¨ubeck, Germany)
提出的2.5D的自监督方法,预测不同slice之间某两点的相对位移。使用两个预测网络:直接数值预测和热力图方法。主要用于胸片数据。
Scaling and Benchmarking Self-Supervised Visual Representation Learning
Author:Priya Goyal 等(Facebook)
提出了几个self-supervised 的trick:
-
increasing the size of pre-training data improves the transfer learning performance for both the Jigsaw and Colorization methods
-
Pre-trai