【系列论文研读】Self-supervised learning:rotating,M&M tuning,Jigsaw++

本文介绍了自监督学习在3D上下文特征学习、视觉表示学习以及视频几何变换中的应用。研究显示增加未标记数据的规模和使用更大的预训练模型可以提升自监督学习的效果。同时,Mix-and-Match调优方法被用于自我监督语义分割任务,通过颜色化预训练、M&M调优和目标分割任务实现性能提升。此外,Jigsaw++任务通过替换网格中的图像块以增强学习难度。最后,DeepCluster方法利用聚类产生伪标签进行预训练。
摘要由CSDN通过智能技术生成

How to learn from unlabeled volume data: Self-Supervised 3D Context Feature Learning

Author:Maximilian Blendowski(University of L¨ubeck, Germany)

提出的2.5D的自监督方法,预测不同slice之间某两点的相对位移。使用两个预测网络:直接数值预测和热力图方法。主要用于胸片数据。

 

Scaling and Benchmarking Self-Supervised Visual Representation Learning

Author:Priya Goyal 等(Facebook)

提出了几个self-supervised 的trick:

  1. increasing the size of pre-training data improves the transfer learning performance for both the Jigsaw and Colorization methods

  2. Pre-trai

作者:Xiaohang Zhan,Ziwei Liu,Ping Luo,Xiaoou Tang,Chen Change Loy 摘要:Deep convolutional networks for semantic image segmentation typically require large-scale labeled data, e.g. ImageNet and MS COCO, for network pre-training. To reduce annotation efforts, self-supervised semantic segmentation is recently proposed to pre-train a network without any human-provided labels. The key of this new form of learning is to design a proxy task (e.g. image colorization), from which a discriminative loss can be formulated on unlabeled data. Many proxy tasks, however, lack the critical supervision signals that could induce discriminative representation for the target image segmentation task. Thus self-supervision's performance is still far from that of supervised pre-training. In this study, we overcome this limitation by incorporating a "mix-and-match" (M&M) tuning stage in the self-supervision pipeline. The proposed approach is readily pluggable to many self-supervision methods and does not use more annotated samples than the original process. Yet, it is capable of boosting the performance of target image segmentation task to surpass fully-supervised pre-trained counterpart. The improvement is made possible by better harnessing the limited pixel-wise annotations in the target dataset. Specifically, we first introduce the "mix" stage, which sparsely samples and mixes patches from the target set to reflect rich and diverse local patch statistics of target images. A "match" stage then forms a class-wise connected graph, which can be used to derive a strong triplet-based discriminative loss for fine-tuning the network. Our paradigm follows the standard practice in existing self-supervised studies and no extra data or label is required. With the proposed M&M approach, for the first time, a self-supervision method can achieve comparable or even better performance compared to its ImageNet pre-trained counterpart on both PASCAL VOC2012 dataset and CityScapes dataset.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值