判别式模型和生成式模型的区别(discriminative model and generative model)


        在NLP和机器学习中经常会遇到这两种显著不同的模型,在学习阶段(训练阶段)和评估阶段(测试阶段)都有不同的表现

总结一下它们之间的区别,欢迎补充:

1. 二者最本质的区别是建模对象不同

   假设有样本输入值(或者观察值)x,类别标签(或者输出值)y

   判别式模型评估对象是最大化条件概率p(y|x)并直接对其建模,生成式模型评估对象是最大化联合概率p(x,y)并对其建模。

   其实两者的评估目标都是要得到最终的类别标签Y, 而Y=argmax p(y|x),不同的是判别式模型直接通过解在满足训练样本分布下的最优化问题得到模型参数,主要用到拉格朗日乘算法、梯度下降法,常见的判别式模型如最大熵模型、CRF、LR、SVM等;

   而生成式模型先经过贝叶斯转换成Y = argmax p(y|x) = argmax p(x|y)*p(y),然后分别学习p(y)和p(x|y)的概率分布,主要通过极大似然估计的方法学习参数,如NGram、HMM、Naive Bayes。

2. 判别式模型更加灵活

  主要体现在特征选择上,生成式模型一般需要将特征加入马尔可夫链,而判别式模型加入任意特征进行组合

3. 判别式模型需要有指导训练,生成式模型可以无指导训练

  上文提到生成式模型主要通过极大似然估计进行参数学习,EM算法可以在状态值未知的情况下求得极大似然估计的局部最优解

### 多目标跟踪算法的分类及其特点 #### 生成式判别式区别 在多目标跟踪领域,根据不同的表观建模方法,可将跟踪算法分为生成式判别式两大类。 对于生成式跟踪算法而言,这类方法侧重于构建一个能够描述目标外观特征的概率分布模型。具体来说,生成式模型试图捕捉并重现目标对象可能出现的各种形态,从而实现对目标的有效识别与追踪。此过程中并不特别关注背景环境的影响因素,而是专注于如何精确地模拟出目标本身的特性[^2]。 相比之下,判别式跟踪则更注重区分前景(即待追踪的目标)与背景之间的差异。它旨在寻找一种映射关系或决策边界,使得给定输入图像后可以直接判断哪些像素属于感兴趣的对象,而无需显式地重建整个场景的内容。这种方法通常依赖大量标注样本进行训练,在面对复杂变化时展现出更强的学习能力与适应性[^3]。 #### 应用场景 当涉及到具体的使用场合时: - **生成式模型**更适合用于那些具有较为固定结构化特性的物体跟踪任务中,比如车牌号码识别、特定人物面部监测等。由于此类情况下被观测物体会呈现出相对稳定不变的特点,因此利用预先训练好的生成器去拟合这些已知模式是比较可行的选择。 - **判别式模型**广泛应用于更加动态复杂的环境中,例如行人重识别、无人机航拍下的移动车辆监控等领域。因为现实世界里的视觉数据往往充满不确定性,采用基于监督学习框架下优化得到的分类器能更好地应对各种干扰项带来的挑战,提供更为鲁棒可靠的解决方案[^4]。 ```python # 示例代码展示简单的生成式 vs 判别式模型的应用 import numpy as np def generative_model(data, label): # 假设这是一个简单的一维高斯分布作为生成式模型的例子 mean = data[label==0].mean() std = data[label==0].std() def predict(x): likelihoods = (1/(np.sqrt(2*np.pi)*std)) * \ np.exp(-((x-mean)**2)/(2*std**2)) return likelihoods return predict def discriminative_model(X_train, y_train): from sklearn.linear_model import LogisticRegression model = LogisticRegression().fit(X_train, y_train) def predict_proba(x_new): probas = model.predict_proba([x_new])[0][1] return probas return predict_proba ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值