数据挖掘怎么做关联性分析呢?

本文介绍了如何利用数据挖掘中的关联规则分析,以购物篮为例,展示从创建数据集到模型应用的过程。通过亿信华辰的豌豆DM平台,分析订单数据,找出商品之间的关联度,从而实现个性化推荐,提高购物体验和销量。例如,购买牛油果和洋姜的顾客可能会被推荐喜力啤酒,购买橄榄和腌牛肉的顾客可能会被推荐胶鲜鱼。
摘要由CSDN通过智能技术生成

大家打开某宝,会发现,购物网站越来越懂我们了,推荐的商品正好就是我们想买的。其实这里面用到了数据挖掘中的关联规则,是典型的应用。类似应用还有很多,例如:资讯类APP的推荐(今日头条);微博推荐等。

接下来我们以购物篮这个典型的应用来为大家介绍,在购物场景下,是如何做关联分析,并帮助购物者更快速买到自己想要的东西。

全文讲解中所用到的产品是由亿信华辰提供的数据挖掘平台豌豆DM。

整个过程分为以下几个步骤:

应用目标:从订单数据集中找出关联度较高的商品。

创建数据集

下图的数据集为某商城的订单数据集(1000条订单号,20个商品类别)。

数据探索

首先通过豌豆DM提供的数据探索功能,查看数据是否存在缺失值,如果缺失应通过数据预处理功能,剔除缺失的数据。通过数据探索发现,该数据集的完整性较好,不需要做数据预处理。

构建模型

然后创建关联规则的挖掘过程,选择FP-Growth或Apriori算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值