大家打开某宝,会发现,购物网站越来越懂我们了,推荐的商品正好就是我们想买的。其实这里面用到了数据挖掘中的关联规则,是典型的应用。类似应用还有很多,例如:资讯类APP的推荐(今日头条);微博推荐等。
接下来我们以购物篮这个典型的应用来为大家介绍,在购物场景下,是如何做关联分析,并帮助购物者更快速买到自己想要的东西。
全文讲解中所用到的产品是由亿信华辰提供的数据挖掘平台豌豆DM。
整个过程分为以下几个步骤:
应用目标:从订单数据集中找出关联度较高的商品。
创建数据集
下图的数据集为某商城的订单数据集(1000条订单号,20个商品类别)。
数据探索
首先通过豌豆DM提供的数据探索功能,查看数据是否存在缺失值,如果缺失应通过数据预处理功能,剔除缺失的数据。通过数据探索发现,该数据集的完整性较好,不需要做数据预处理。
构建模型
然后创建关联规则的挖掘过程,选择FP-Growth或Apriori算