作者:AgaMiko | 编辑:Amusi
前言
CVer 陆续分享了GitHub上优质的AI/CV资料集锦,如图像分类、目标检测等,之前的分享详见文末。很多同学反映这个系列很棒,因此系列将继续更新。
本文将分享的内容是:数据增广(Data Augmentation)。该方向的研究一直都很热门,特别是现在仍十分依赖于数据,而且数据增广对各个应用方向的涨点都是简单粗暴的!
数据扩充可以简单地描述为使我们的数据集更大的任何方法。例如,要创建更多图像,我们可以放大并保存结果,我们可以更改图像的亮度或旋转它。为了获得更大的声音数据集,我们可以尝试提高或降低音频样本的音调或放慢/加快速度。下图提供了示例数据增强技术。
Amusi 在本文要分享的就是目前最全,最新的数据增广开源项目、论文等合集。主要涉及图像、音频、自然语言处理和时序的数据增广。
数据增广
项目作者:AgaMiko
https://github.com/AgaMiko/data-augmentation-review
目录
Images
- Adversarial noise
- Neural Style Transfer
- Generative Adversarial Networks
- Random erasing
- Adding rain effects, sun flare…
- Image blending
- Contrast shift
- Brightness shift
- Blurring
- Channel shuffle
- Rotation
- Scaling
- Random cropping
- Reflection
- Affine transformations
- Elastic transformations
- Advanced transformations
- Neural-based t