GitHub:数据增广最全资料集锦

本文汇总了GitHub上的数据增广资源,包括计算机视觉和自然语言处理领域的开源项目,如albumentations、imgaug等,以及NLP数据增广工具如nlpaug、EDA NLP等。这些工具和技术能有效扩充数据集,提升模型性能。
摘要由CSDN通过智能技术生成

作者:AgaMiko | 编辑:Amusi

前言

CVer 陆续分享了GitHub上优质的AI/CV资料集锦,如图像分类、目标检测等,之前的分享详见文末。很多同学反映这个系列很棒,因此系列将继续更新。

本文将分享的内容是:数据增广(Data Augmentation)。该方向的研究一直都很热门,特别是现在仍十分依赖于数据,而且数据增广对各个应用方向的涨点都是简单粗暴的!

数据扩充可以简单地描述为使我们的数据集更大的任何方法。例如,要创建更多图像,我们可以放大并保存结果,我们可以更改图像的亮度或旋转它。为了获得更大的声音数据集,我们可以尝试提高或降低音频样本的音调或放慢/加快速度。下图提供了示例数据增强技术。
在这里插入图片描述
Amusi 在本文要分享的就是目前最全,最新的数据增广开源项目、论文等合集。主要涉及图像、音频、自然语言处理和时序的数据增广。

数据增广

项目作者:AgaMiko

https://github.com/AgaMiko/data-augmentation-review

目录

Images

  • Adversarial noise
  • Neural Style Transfer
  • Generative Adversarial Networks
  • Random erasing
  • Adding rain effects, sun flare…
  • Image blending
  • Contrast shift
  • Brightness shift
  • Blurring
  • Channel shuffle
  • Rotation
  • Scaling
  • Random cropping
  • Reflection
  • Affine transformations
  • Elastic transformations
  • Advanced transformations
  • Neural-based t
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值