工作是越来越来难找了。
今天,遇到一个朋友跟我诉苦,说现在想做算法工程师,或者视觉方向的开发,要是没个顶会论文,连简历都不给你回
但同时,我也看到了很多人在哀嚎
“我是AI的研究生,该怎么发出paper啊?现在在学校就是看看paper,搬一些开源代码到自己的项目上,做做试验,感觉和科研创新没毛线关系”
“我研究了很多github的目标检测开源代码项目,也做了自己的一些创新,可面试官还是认为我没有实际项目经验?”
“我阅读和复现了很多paper,但回到自己的课题上却写不出适合的代码,出了很多问题也不知道原因”
“我导师很佛系,对我们放养,我毕业论文的细分领域他也不是很懂,没法跟我指导,以后想找工作,我该如何选择研究方向、如何做科研创新?”
“我是计算机相关专业的,但毕业课题没有做AI相关的,现在想通过一段时间的强化训练找CV或NLP方向的实习岗,但完全没有经验啊,该怎么办?”
我发现,太多人就好像被刮进了AI的龙卷风,风力够猛,但又没有方向
后来,因为工作性质的原因,我访谈了很多工业界的资深算法工程师,以及研究机构的研究科学家、名校的高年级博士生、青年老师们。
他们说:“想发出一定级别的paper,科研方向和创新点的选择很重要,但这些必须是一线的非常有经验的科研工作者才有发言权,一方面他自己有很深的科研积淀,一方面他几年如一日跟踪顶会和顶刊的全世界科研人员的研究成果,知道哪些方向是科研热点,哪些创新点是容易出成果”
而这些基本上,是自己很难接触到的。
其实很多paper的研究工作都是有一定的背景和先决条件的,很多人只知道盲目的套用,并不能适用于自己的项目。只有踩过很多坑的人,才知道哪些paper能用,哪些就了解一下就可以,通过针对研究课题,从一堆方法中如何选择最合适的基石方法。如果没有人告诉你这些,你必须踩很多坑、浪费很多时间后才能摸索到。
基于此,2020年我组织开设了两期
“实时目标检测工业级项目开发及科研指导”
“实时目标检测,尽管网络上有很多开源代码,但几乎没有任何开源代码能在诸如NCS2等边缘设备上同时满足检测准确率(%)和检测速度(FPS)要求。开源代码在单一指标上做得再好,到实际公司项目中也没有意义,你仅有做了满足单一指标的一些经验,入不了用人公司法眼。”
只有让你在同时满足准确率和检测速度2个指标、达到企业真实需求的实时目标检测项目,用项目高效串起目标检测最核心最精要的知识、技能、技巧,才能完成能力的“跃迁”。
他是一个“指导”服务,也是一个课程,是导师将自己多年的经验、教训(踩坑)、功力进行提炼和输出,形成的3个月就能做出的企业级项目
通过科学的阶段划分,按如下安排设计:
第一个月:基础夯实,清晰讲解八年来目标检测算法发展的技术脉络,非常详细的YOLO v3代码讲解+实战教学;
第二个月:教授和带领学员从零写一个基于FCOS的目标检测系统;
第三个月:教授和带领学员进行模型剪枝、系统性能优化。
在这个过程中,包括:
个性化评估指导、授课、小组讨论、导师点评、技术总结、代码1对1答疑/诊断/优化/修改
其中授课部分会讲解技术发展脉络,核心算法及代码,关键技术,项目难点关键点,科研创新方向等;
其中会讲解传授市面上培训课程见不到的技术,自学学不会,比如动态样本规划、模型部署,让你真正接触到一个完整的企业项目,并可以从项目中获得论文的创新方向
授课方式
1
直播授课,手写代码及过程
讲解中涉及目标检测领域那些算法/模型/技术在实际应用,提供YOLO、SSD、FasterRCNN、Retina、FCOS的核心算法代码、数据集、训练脚本。通过纯手写的模式让你掌握算法的具体结构,课堂上立马能吸收75%知识点,效率更高。
2
超详细的YOLOv3代码讲解+实战教学
通过讲解代码和论文,让你掌握目标最热门,应用范围最广的目标检测算法
3
顶会作者手把手教你写基于FCOS的高性能目标检测系统
要知道在实际工业场景中,目标检测项目的重点不是模型搭建,而是监督信息的编码和损失函数设计,在不同数据集上锻炼检测算法的核心设计能力
利用模型剪枝技术使检测器最终能在终端机器上达到实时检测性能,达到企业真实项目的需求
4
专门搭建的目标检测代码工程库(基于Pycharm)
并交付学员每人一套实时目标检测的代码工程库,在一个工程中
在一个工程下梳理yolo、ssd、faster rcnn、retina、fcos代码,因为目标检测任务的重点不是模型搭建,而是监督信息的编码和损失设计,我们会在一个工程下搭建你个人的目标检测框架,在不同数据集上锻炼检测算法的核心设计能力
5
面试知识点总结、讲解
在项目指导完成的过程中,会结合模拟面试,加强对面试知识点以及项目内容的理解
6
获得发论文的科研方向
随着项目指导的进行,指导老师会不断高亮该领域科研创新的具体方向或地方,若想发论文的同学,可以以此科研项目为基础进行论文的发表
你能产出的最后结果
1、 Github上产出项目+代码
2、 技术报告
深度之眼一直作为内部课程,开展了2期,收获了显著的好评
➢ 所有学员均学有所获,75%学员的收获程度高于 8 分
➢导师认真负责,学员评价达到 9.5 分
➢100%学员都愿意推荐我们的课,甚至还有学员学完想继续跟着回炉重造
为了让更多的人能够获益,本次深度之眼联合主讲导师,将开展一节
公开直播课
结合自己的科研经历和工业经验和大家分享针对以上问题的指导意见。除了专业的分享外,会安排充分的互动,回答大家的各种问题。
。。READING
指导老师·Zack博士
数篇国际顶级会议/期刊论文第一作者(包括CVPR, ICPR等)
6项CV方向专利持有者,
国际计算机视觉顶级赛事冠军,
视觉四小龙高级算法研究员,
长期双线从事计算机视觉相关算法的学术研究和工业开发工作
直播主题
目标检测里的anchor机制和动态正负样本划分策略
直播大纲
1. 从yolo, retinanet出发分析目标检测里的anchor是什么,以及为什么需要anchor。
2. 为什么可以anchor-free?
3. Anchor机制存在的问题有哪些?
4. 自适应anchor阈值的动态样本匹配技术
直播时间
12月18日晚上7点
扫码添加二维码,回复【科研直播】即可报名
获取直播地址及内部资料
为保证效果,本次直播将会控制人数,
直播时间将会在群内通知!
群满既止
(咨询论文写作指导,也可加二维码)