性能再次提升2%!仅85K参数的开源人脸检测算法

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

来源:于仕琪

上次五一假期更新后,在这个中秋假期,我们的人脸检测算法又更新了!假期更新成了这个库的传统a3971d2fa534bbfbcb2b766b7276db8a.png这次更新版本计算量不变,准确率提升2%。

项目代码链接:

https://github.com/ShiqiYu/libfacedetection

首先说说这个算法十几年的演进历史:

  • 2008年,我刚参加工作不久,有家企业请我帮忙训练一个更好的人脸检测算法,我用Haar+AdaBoost训练了一下,准确率比OpenCV里开源方案有明显提升。

  • 随后我自己写爬虫在网上爬了几万张照片,手动标注了所有人脸,效果更好了,项目顺利交付。

  • 随后十年,研究人脸检测成了我的业余编程娱乐(我主业是步态识别)。我重写了Haar+AdaBoost提升训练效率,然后研究各种特征,把所有常见特征描述子(HOG、BRIEF、LBP、...)手写实现,把各种Boosting算法的变种手写实现,统统试了一遍。人脸检测每年提升一点点,最后做到了还算可以的效果。

  • 因为算法体积小、速度快、准确率高,一些公司在产品中采用了我设计的人脸检测算法。这些企业里有比较大的,例如某某企业的市场占有率第一的某款视频监控芯片、某某企业第一款人脸识别手机等。

  • 我苦苦思索和钻研人脸检测近十年,深度学习一拳打来,一下子刷新了我的认知。较早时候,我用Caffe训练了人脸检测,后来改用PyTorch,一点点提升着准确率,并把算法开源,以帮助更多的人。我用C++重写了深度学习算法的实现,只有1000行代码左右,也不需要依赖任何其他库,具有极佳的可移植性。

  • 做了十年人脸检测,我和我团队有一些想法和观点,便写了一篇论文Feng et. al, Detect Faces Efficiently: A Survey and Evaluations,这篇论文最近被IEEE Trans. on Biometrics, Behavior, and Identity Science接收,最近会上线。 

  • 这个人脸检测模型,跟北邮邓伟洪教授的人脸识别模型,一起作为人脸方案,被即将发布的OpenCV 5.0采纳,敬请期待。

  • 最近一年,我将更多精力放在步态识别科研、教学和服务。我的研究生参与进来,把人脸检测这事当作一项工作,而不是我节假日的业余工作。这样这个开源库可以持续高质量地维护下去,让更多人受益。

我们的开源人脸检测项目,在GitHub上已经获得10K星。欢迎大家三连(使用、反馈和建议)91bf2477541341ffb01c588122c979ef.png

项目代码链接:

https://github.com/ShiqiYu/libfacedetection

f5e3e809b56319a323d027943b0bf4fa.png

开源人脸检测库libfacedetection,有如下特点:

  • 深度模型仅有85K个参数。

  • 采用AVX512/AVX2/NEON指令提速。

  • 代码简短和简洁,只有一千多行代码。

  • 代码不依赖任何其他第三方库,只要平台能编译C++则可使用。

  • 项目License采用3-Clause BSD License,可以商业应用。


上一次更新的变化(本次更新只是模型参数数值不同):

  • 参数数量由2340K降到85K,参数量仅为上一版本的1/30。

  • 弃用int8,采用float,节约数据类型转换时间,且代码更为简洁。

  • 速度略有提升(提升速度好难,花了四五个月)。

  • 训练程序采用我们新设计的EIoU损失函数,提升了准确率(论文:Hanyang Peng and Shiqi Yu, A Systematic IoU-Related Method: Beyond Simplified Regression for Better Localization, IEEE Transactions on Image Processing,  vol. 30, pp. 5032-5044, 2021.)

准确率参数如下:

本次更新在Wider Face上的准确率变化

AP_easy:   0.834->0.856
AP_medium: 
0.824->0.842
AP_hard:   0.708->
0.727

主要贡献人:

  • 这一版主要贡献人:吴伟同学 

参考文献:

  • Yuantao Feng, Shiqi Yu, Hanyang Peng, Yan-ran Li and Jianguo Zhang, Detect Faces Efficiently: A Survey and Evaluations, IEEE Transactions on Biometrics, Behavior, and Identity Science,(论文近日将上线)

  • Hanyang Peng and Shiqi Yu, A Systematic IoU-Related Method: Beyond Simplified Regression for Better Localization, IEEE Transactions on Image Processing, vol. 30, pp. 5032-5044, 2021. 

推荐阅读:

开源了!仅有85K个参数的人脸检测算法

重磅!最快人脸检测库开源

libfacedetection项目下载

后台回复:85k,即可下载上述项目代码

ICCV和CVPR 2021论文和代码下载

后台回复:CVPR2021,即可下载CVPR 2021论文和代码开源的论文合集

后台回复:ICCV2021,即可下载ICCV 2021论文和代码开源的论文合集

后台回复:Transformer综述,即可下载最新的两篇Transformer综述PDF

重磅!人脸检测交流群成立

扫码添加CVer助手,可申请加入CVer-人脸检测微信交流群,方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch和TensorFlow等群。

一定要备注:研究方向+地点+学校/公司+昵称(如人脸检测+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

d29bec3f21c8bc675f92416efeddb06d.png

▲长按加小助手微信,进交流群

▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看623ab63554674ec75f7955d10ecf2a52.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值