复旦大学重磅开源:AIGC图像检测方法的综合测评平台

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【视觉和Transformer】微信交流群

扫码加入CVer知识星球可以最快学习到最新顶会顶刊上的论文idea和CV从入门到精通资料,以及最前沿项目和应用!发论文,强烈推荐!

aaa5d24d2e95d064a49d9b33daf9e933.jpeg

1973c0bd0380488a58de0a73bfd4baec.png

(本图由AIGC大模型合成)

随着AIGC技术的发展,由AI所生成的虚假图像的检测正成为一个新的研究热点。然而,现有检测方法的实验条件与测试数据集不完全相同,无法直接横向对比检测性能。为此,复旦大学计算机学院多媒体智能安全实验室针对现有主流AIGC图像检测方案进行全面分析与比较,并提出了性能更好的AIGC图像检测新方法。

更进一步,课题组提供了一个综合测试与评估平台,在保证相同训练集与实验条件的情况下,分析并测试了目前检测算法的检测准确率与泛化性等性能指标,为AIGC生成图像检测领域提供一项基准的实验对比平台(Benchmark),同时整合并开源了多种现有AIGC生成图像的检测算法,供同行研究比较。欢迎大家下载源代码、测评比较,并引用课题组在arXiv公开的论文。

论文信息:

N. Zhong, Y. Xu, Z. Qian*, X. Zhang*. Rich and Poor Texture Contrast: A Simple yet Effective Approach for AI-generated Image Detection[J]. arXiv preprint arXiv:2311.12397, 2023.(点击下方阅读原文查看论文全文)

AIGC图像测评网站:

https://fdmas.github.io/AIGCDetect/

开源代码链接 :

https://github.com/Ekko-zn/AIGCDetectBenchmark

论文链接:

https://arxiv.org/abs/2311.12397

96713d97e575502d838cfb448491b258.png

cb4613ab9387239f74d3c56cf01d3038.png

aa17016c4acd9d5f559c084084512b71.png


AIGC图像检测方法的综合测试与评估

钟楠,徐怡然,钱振兴,张新鹏

一. 引言

近年来,AI生成图像在视觉质量、语义复杂度、运行时间效率等方面都有了显著提升。生成虚假图像所­­­­需的专业知识和成本也都有了明显下降,各大生成图像平台纷纷涌现,人人都可以使用在线工具(如Midjourney,DALL·E等),根据自己的需求生成虚假图像。

09b42bda3fc8800d65408c0a057a66d4.png

Midjourney是近年来最火爆的在线图像生成平台,目前已经更新到了第5.2代,用户可以付费使用。DALL·E由OpenAI公司研发,用户可以付费后将DALL·E 3模型和ChatGPT Plu版、企业版结合使用。微软公司还将DALL·E模型整合到了Bing聊天功能中,在Microsoft Edge浏览器中向用户提供服务。Stability AI公司研发的Stable Diffusion已经开源了Stable Diffusion v2.0, v2.1和XL等多个版本的预训练模型。用户可以使用在线接口或者使用开源模型在本地计算。这些都是强大的text-to-image工具,根据用户输入的文字生成相应内容的高质量图像。除此之外,Pixeling、wukong等等在线平台还支持中文输入的text-to-image功能。

这前所未有的可访问性引发了人们对虚假信息普遍传播的担忧。

64345e6eda8c4080ee54938d7deb75b9.png

a1749e5591f7aa848acbbb5e2241f8fa.png

6ec8f05ced360ca7cd9d8e705a151ce5.png

75aaf9a2bce86c412ba968fb5dd47b0b.png

7645be693dae8ab0ceb6812b85feaaee.png

b4a35fc16ae3959e1f669153c46c939d.png

左右滑动查看更多

🌟

猜猜看:上述图像哪张是由AI模型生成的?

点击下方空白处查看答案

第一张图像是由AI模型生成的。


根据Lago等人的研究 [1] ,受访者将StyleGAN生成图像中的68%标记为“真实的”,却将真实图像中的48%标记为“虚假的”。可见生成图像已经能够“欺骗”人类的眼睛,开发有效的检测工具迫在眉睫。

目前,已有许多针对AI生成虚假图像的检测工作 [2-9] ,然而,它们在性能分析实验中存在着一定的不一致性和不足。

3099da8caa87768dbef942eb31e748c0.png

(1)训练集的不一致

在实际应用中,由于待检测的AI生成图像的生成模型是不可知的,因此检测器的泛化性,即检测器对在训练阶段未见过的数据的检测性能,是评估检测器的一个重要标准。为了保证比较的公平性,所有检测器都应在同一训练集上训练而得。然而目前SOTA检测方法所提供的预训练模型普遍使用了不同的训练集,无法公平地对比泛化性。

(2)测试集的多样性不足

大部分检测方法都致力于准确、高效地区分GAN生成图像和真实图像,却忽视了扩散模型的强大能力,并没有测试在扩散模型生成图像数据集上的准确率。因此无法评估这些方法在扩散生成模型上的泛化性。

上述问题对后续的研究工作产生了一定的阻碍。相关研究人员需要花费大量的时间、精力和计算资源来复现现有检测方法,来进一步补充验证实验。为了解决这一问题,我们使用同一训练集来训练各种不同的AI生成图像检测器,并进行了一系列针对现有方法的基准测试,来评估现有方法在泛化性、鲁棒性上的能力。我们共选取了9个SOTA检测方法 [2-10] ,在16个生成图像数据集上进行了大量测试。旨在提供一种标准化的方式来比较不同方法的性能,以便发现现有方法存在的优缺点,为后续工作的开展提供方便的基准分析框架,以及有价值的参考指标和改进方向。此外,我们还整合了现有SOTA方法的测试接口,并开源了所有检测器的预训练模型。

二、实验

我们进行了一系列的实验来分析这些检测方法在各类GAN、Diffusion Model生成图像上的泛化性和鲁棒性。


表1 测试数据集概览

9edfc061fa417c62dc7b470a616d3de7.png

我们采用的训练数据集是由Wang 等人 [2] 提供的ProGAN生成图像数据集。测试数据集的构建则使用了各种生成模型,包括一些先进的商用生成器(如 Midjourney,DALL·E 2),以更全面地评估和比较每种检测器的泛化性。测试集包含 Wang 等人 [2] 和 Zhu [11] 等人提供的数据集、以及我们自己构造的生成图像数据集,共计16个。部分实验结果如下所示:

f2dd4555345170a54b0791e33943f890.png

图1 各检测方法在不同数据集上的检测准确率

图1中,各雷达图的中心表示检测准确率为0%,最内侧的圆环表示检测准确率为20%,以此类推,最外侧的圆环表示检测准确率为100%。最外侧标记了16个数据集,每个数据点表示该检测方法在对应数据集上的检测准确率。数据点越靠外侧圆环,说明在该数据集上的准确率越高。从整体上来说,一个更靠外的十六边形(更接近圆的图形)表示该检测方法具有更好的泛化性能。

实验中我们用到的检测方法有:

[CNNSpot] Wang等人 [2] 提出了使用ResNet50模型训练用于分辨真实图像和生成图像的二分类器,并在训练过程中加入了对图像的随机预处理(JPEG压缩、高斯模糊、图像大小调整等)来提升模型的泛化能力。

[FreDect] Frank等人 [3] 分析了多种流行的GAN模型生成的虚假图像在频域上的特征,并发现这些虚假图像在频域上都存在着类似的,由上采样操作留下的伪影。基于这个发现,提出了基于频域特征的二分类器。

[Gram-Net] Liu等人 [4] 把检测重心放在GAN生成的虚假人脸上。发现合成人脸在纹理统计上与真实人脸图像有着明显的区别,并且,全局纹理信息可以有效提升检测器的泛化性和对各种图像失真的鲁棒性。在CNN模型的基础上,引入了Gram模块来提取图像的全局纹理信息,构成了Gram-Net。

[Fusing]  Ju等人 [5] 使用双分支框架,将全局图像特征与信息丰富的局部块特征相结合,以增强合成图像检测的泛化能力。此外,借助基于注意力机制的块选择模块,能够自动选择多个块,无需手动标注即可有效提取局部微小伪造特征。

[UnivFD]  Ojha等人 [8] 分析了CNNSpot分类器学习到的决策边界具有不对称性,虽然可以有效区分出GAN生成的虚假图像,但是真实图像的特征空间并不具有独立性,即所有非GAN生成的图像(真实图像、Diffusion生成图像)都被归为了一类。因此,Ojha等人认为,要提升检测器的泛化性,使其合理区分真实图像和虚假图像,即学习到平衡的决策边界,需要一个合适的特征空间。Ojha等人使用了预训练的CLIP:ViT模型来提取特征空间。

[LGrad] Tan等人 [7] 在开始训练分类器之前,使用一个预训练CNN模型(如VGG16, ResNet50, ProGAN的鉴别器等等)将图像转换成梯度图,并归一化到[0,255]。在梯度图数据集上训练得到一个区分真实图像和生成图像的二分类器。

[LNP] Liu等人 [6] 对真实图像的噪声模式进行了频域分析,发现在真实图像之间,这种噪声模式存在着一致性,而生成图像之间的噪声模式则差距很大,因此可以根据图像的噪声模式来分类。噪声模式是原始图像减去去噪图像后,得到的没有语义干扰的模式。

[DIRE] Wang等人 [9] 注意到了现有生成图像检测方法在扩散模型上的性能有明显下降,因此提出了一个新的检测方法。他们发现与真实图像相比,通过预先训练的扩散模型可以更准确地重建扩散过程产生的图像。在此预设基础上,提出了扩散重构错误(DIffusion REconstruction Error, DIRE),用于检测基于扩散模型的生成图像。

[RPTC] Zhong等人 [10] 利用了图像内丰富和贫乏纹理区域之间的像素间相关性对比度来检测AI生成图像。他们发现纹理复杂区域中的像素表现出比纹理平坦区域中更显著的波动。基于这一原理,他将图像划分为多个块,并将其重建为两个图像,分别包括复杂纹理块和平坦纹理块。随后,提取了复杂纹理区域和平坦纹理区域之间的像素间相关性差异特征,作为一种通用“指纹”,用于不同生成模型中的生成图像取证。

三、参考资料

1. Lago F, Pasquini C, Böhme R, et al. More real than real: A study on human visual perception of synthetic faces [applications corner][J]. IEEE Signal Processing Magazine, 2021, 39(1): 109-116.

2. Wang S Y, Wang O, Zhang R, et al. CNN-generated images are surprisingly easy to spot... for now[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 8695-8704.

3. Frank J, Eisenhofer T, Schönherr L, et al. Leveraging frequency analysis for deep fake image recognition[C]//International conference on machine learning. PMLR, 2020: 3247-3258.

4. Liu Z, Qi X, Torr P H S. Global texture enhancement for fake face detection in the wild[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 8060-8069.

5. Ju Y, Jia S, Ke L, et al. Fusing global and local features for generalized ai-synthesized image detection[C]//2022 IEEE International Conference on Image Processing (ICIP). IEEE, 2022: 3465-3469.

6. Liu B, Yang F, Bi X, et al. Detecting generated images by real images[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 95-110.

7. Tan C, Zhao Y, Wei S, et al. Learning on Gradients: Generalized Artifacts Representation for GAN-Generated Images Detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 12105-12114.

8. Ojha U, Li Y, Lee Y J. Towards universal fake image detectors that generalize across generative models[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 24480-24489.

9. Wang Z, Bao J, Zhou W, et al. DIRE for Diffusion-Generated Image Detection[J]. arXiv preprint arXiv:2303.09295, 2023.

10. Zhong N, Xu Y, Qian Z, et al. Rich and Poor Texture Contrast: A Simple yet Effective Approach for AI-generated Image Detection[J]. arXiv preprint arXiv:2311.12397, 2023.

11. Zhu M, Chen H, Yan Q, et al. GenImage: A Million-Scale Benchmark for Detecting AI-Generated Image[J]. arXiv preprint arXiv:2306.08571, 2023.


供稿:钟楠,徐怡然,复旦大学计算机学院多媒体智能安全实验室

实验室简介:多媒体智能安全实验室(MAS Lab)现有教师3位(张新鹏教授、钱振兴教授、李晟副教授)、在站博士后2位、在读博士生19位、在读硕士生30位,主要研究多媒体与人工智能安全,包括信息隐藏、多媒体取证、人工智能安全、虚拟机器人、多媒体应用等五个方向。实验室团队已发表学术论文400余篇,多篇论文发表在IEEE TPAMI、TIFS、TIP、TDSC、TCSVT、TMM、TCYB、TCC、TASPL、AAAI、IJCAI、NeurIPS、ACM MM、ICCV、CIKM等顶刊顶会上。欢迎青年才俊加入复旦多媒体智能安全实验室!

复旦大学多媒体智能安全实验室主页:

https://fdmas.github.io/

神经网络模型研究资源:

https://fdmas.github.io/research/Neural_Network_Watermarking.html

虚假新闻检测研究资源:

https://fdmas.github.io/research/fake-news-detection.html

AIGC取证主页:

https://fdmas.github.io/AIGCDetect/

CVPR / ICCV 2023论文和代码下载

 
 

后台回复:CVPR2023,即可下载CVPR 2023论文和代码开源的论文合集

后台回复:ICCV2023,即可下载ICCV 2023论文和代码开源的论文合集
计算机视觉和Transformer交流群成立
扫描下方二维码,或者添加微信:CVer444,即可添加CVer小助手微信,便可申请加入CVer-计算机视觉或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF等。
一定要备注:研究方向+地点+学校/公司+昵称(如目标检测或者Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

 
 
▲扫码或加微信号: CVer444,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集近万人!

▲扫码加入星球学习
 
 
▲点击上方卡片,关注CVer公众号
整理不易,请点赞和在看fb220e82b249f7177f8d6d7195f82905.gif
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: ctly to a server means uploading the application files and configuring the server to run the application. 直接部署Web应用程序到服务器意味着上传应用程序文件并配置服务器以运行应用程序。 ### 回答2: Web应用的部署是为使其在服务器上运行而将应用程序文件和其他资源文件放置在适当位置的过程。部署通常包括以下步骤: 1.选择合适的服务器:根据您的需求选择最适合的服务器,例如:云服务器、共享服务器等。 2.安装必要的Web服务器:部署Web应用程序的第一步是确保您在服务器上安装了Web服务器。Web服务器承担着从客户端(浏览器)请求和返回响应的任务。例如:Apache、IIS 、nginx等Web服务器 3.获取Web应用程序文件:可以从本地系统或远程服务器获取Web应用程序资源文件,确保它们都在同一个目录下。 4.设置Web应用程序:为了使Web应用程序正确地运行,您需要编辑Web应用程序的配置文件。这可能包括更新数据库连接信息,设置虚拟主机等。 5.创建数据库:如果Web应用程序需要与数据库交互,那么您需要在服务器上创建相应的数据库并设置相应的授权。 6.部署应用程序:最后将Web应用程序资源文件部署到服务器上的相应目录下,并启动Web服务器,在浏览器中使用URL路径来访问Web应用程序即可。 最后,您需要测试应用程序以确保它在服务器上正常工作。如果测试成功,您可以通过设置DNS等配置将Web应用程序运行在公网上。部署Web应用程序要求小心谨慎,因为任何错误都可能导致应用程序的故障。因此,建议在部署之前使用沙箱进行测试来确保安全性和可靠性。 ### 回答3: Web应用程序是一种常见的应用程序类型,用户可以通过互联网访问该应用程序。部署Web应用程序需要许多步骤,以下是一些关键步骤: 首先,需要选择一个可靠的Web服务器。常见的Web服务器包括Apache、IIS和Nginx等。选择服务器应该基于应用程序的具体需求和限制,例如运行平台、安全性和性能等方面。 接下来,需要准备服务器环境。这通常包括安装操作系统、网络协议和所选Web服务器,并确保服务器安全性以及常见的安全更新已安装。 然后,需要将Web应用程序代码上传到服务器。这通常通过FTP或SSH等传输协议进行。如果应用程序使用数据库,还需要安装和配置数据库服务器。 接下来,需要配置Web服务器以正确地显示应用程序。这包括配置服务器以显示正确的Web页面、启用应用程序所需的设置和插件,并处理程序的请求和响应。 最后,需要对应用程序进行测试。这可以帮助发现任何错误或漏洞,并确保应用程序与所选的服务器和配置兼容。测试可能包括单元测试、端到端测试和负载测试。 总之,部署Web应用程序需要许多步骤和技能。但是,通过按照这些步骤进行,可以确保应用程序在Web上成功部署并安全运行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值