AIGC全新综述!多模态引导的基于文生图大模型的图像编辑综述

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【Mamba/多模态/扩散】交流群

添加微信:CVer5555,小助手会拉你进群!

扫描下方二维码,加入CVer学术星球!可以获得最新顶会/顶刊上的论文idea和CV从入门到精通资料,及最前沿应用!发论文/搞科研/涨薪,强烈推荐!

44c2fa3a2fb680315befebc08a026c94.jpeg

前言:

提出解决一般性编辑任务的统一框架!近期,复旦大学FVL实验室和南洋理工大学的研究人员对于多模态引导的基于文生图大模型的图像编辑算法进行了总结和回顾。综述涵盖300多篇相关研究,调研的最新模型截止至今年6月!该综述拓展了关于控制条件(自然语言,图像,用户接口)和编辑任务的讨论 (物体/属性操作、空间变换、inpainting、风格转换、图像翻译,主体/属性客制化),以从更新颖和更一般性的角度全面的探讨编辑方法。此外,该综述提出的统一框架将编辑过程表示为不同算法族的组合,并通过全面的定性和定量实验来说明各种组合的特性以及适应场景。该框架提供了友好的设计空间以满足用户不同的需求,并为研究者们提供了一定的参考以开发新的算法。

摘要:

图像编辑旨在根据用户的特定需求编辑给定的合成或真实图像。作为人工智能生成内容(AIGC)领域中一个有前景且具有挑战性的领域,图像编辑得到了广泛研究。近期,大规模文生图(T2I)扩散模型驱动了图像编辑技术的发展。这些模型根据文本提示生成图像,展示了惊人的生成能力,已成为图像编辑的常用工具。基于T2I的图像编辑方法显著提升了编辑性能,为用户提供了使用多模态条件引导进行内容修改的接口。我们对基于T2I扩散模型的多模态引导下的图像编辑技术进行了全面回顾。首先,我们从更一般性的角度定义了图像编辑任务的范围,并详细描述了各种控制信号和编辑场景。然后,我们提出了一个统一框架来形式化编辑过程,将其表示为两个算法族的组合。这个框架为用户提供了一个设计空间,以实现特定目标。接着,我们对该框架内的每个组件进行了深入分析,研究了不同组合的特性和适用场景。由于基于训练的方法直接学习将源图像映射到目标图像,我们对这些方法进行了单独讨论,并介绍了不同场景下源图像的注入方案。此外,我们也回顾了2D技术在视频编辑中的应用,重点介绍了解决帧间不一致性的问题。最后,我们也讨论了该领域的开放性挑战,并提出了潜在的未来研究方向。    

论文和开源仓库的地址:

6568e9f974b329df297a5bdc27700627.png

论文题目:A Survey of Multimodal-Guided Image Editing with Text-to-Image Diffusion Models

发表单位:复旦大学FVL实验室,南洋理工大学

论文地址:https://arxiv.org/abs/2406.14555

项目地址:https://github.com/xinchengshuai/Awesome-Image-Editing

1.研究动机

1.1,在现实生活中,人们对于可控的、高质量的智能化图像编辑工具的需求日益增加,因此有必要系统地总结与对比下这个方向的方法与技术特点。

1.2,当前的编辑算法与相关的综述都将编辑场景局限于保留图像中的大部分与编辑无关的低级语义信息,为此要必要扩展编辑任务的范围,从更具有一般性的视角讨论编辑任务。

1.3,由于需求和场景具有多样性,有必要将编辑过程形式化为一个统一框架,并为用户提供一个设计空间来适应不同的编辑目标。

2.这篇综述的特色,以及与当前的编辑综述有什么区别?    

2.1 关于编辑任务的定义与讨论范围。相比于现有的算法以及前人的编辑综述,本文对于图像编辑任务的定义更加广泛。具体的,本文将编辑任务分为content-aware 和content-free场景组。其中content-aware组内的场景为之前的文献所讨论的主要任务,它们的共性是保留图像中的一些低级语义特征,如编辑无关区域的像素内容,或图像结构。此外,我们开创性地将客制化任务(customization)纳入到content-free场景组中,将这一类保留高级语义(如主体身份信息,或者其他细粒度属性)的任务作为对常规的编辑场景的补充。

c77ef95a10180fd897ad834dfce1e9b3.jpeg

图1. Survey讨论的各种编辑场景

2.2 一般性编辑算法的统一框架。由于编辑场景的多样性,现有的算法无法很好的解决所有的需求。因我们将现有的编辑过程形式化为一个统一的框架,将其表示为两个算法族的组合。此外我们也通过定性和定量实验分析了不同组合的特性与适应场景,为用户提供了一个良好的设计空间以适应不同的编辑目标。同时,该框架也为研究者们提供了一个较好的参考,以设计出性能更优的算法。    

2.3 讨论的全面性。我们调研了300多篇的相关论文,系统且全面地阐述了各种模态的控制信号在不同场景下的应用。对于基于训练的编辑方法,本文也提供了在各种场景下源图像注入到T2I模型的策略。此外,我们也探讨了图像编辑技术在视频领域的应用,使得读者能够快速的理解不同领域间编辑算法的联系。  

3.一般性编辑算法的统一框架:

0ad43f47bd85f992f9da2d2ab5aa2eef.jpeg

图2. 一般性编辑算法的统一框架

框架包含了两个算法族Inversion算法31392f828a278fd45ae6067891154d0b.png和Editing 算法2b25c0c2f3825edb1c167fea7a78ff6c.png

3.1 Inversion算法。Inversion 算法8857a184422ce587192f883e107dd70a.png将源图像集合9e96db3b0bbcc41d71b9b68b7ffe4a56.png编码到特定的特征或参数空间,得到对应的表征8f64ef44c3a3d4cc33b2f86a0005876d.png(inversion clue),并用对应的源文本描述7b1f2f1fc874279f81cb26b948f220e2.png作为源图像的标识符。包括tuning-basedb0a093be45f5ccdd3eaa4346ea7b811c.png和forward-basedc1f1b8cc273b956a123e7d832abaff07.png两种类型的inversion算法。其可以被形式化为:

cc71f941ce2a9ca6a7aeeb57e03d2703.png

Tuning-based inversion2640ee70a5799058dec021545b92ab84.png通过原有的diffusion训练过程将源图像集合植入到扩散模型的生成分布中。形式化过程为:

991cd34079aefbe33e82e65d1a14dcb5.png

其中32359a420443caceab96c1dce06ed459.png为引入的可学习的参数,且3625f38da2afc6ca105a9230f1751b79.png

Forward-based inversion7366a37f0714bb2f1522ec2f83ec9b21.png用于在扩散模型的反向过程中(4ba4184f254d50fcd99cdcd37e7c1ee5.png)还原某一条前向路径中的噪声(8e31469be1ecbcbeb6c04d0e8005287b.png)。形式化过程为:

204f032b189499004fc4baead8ef12fc.png

其中523b06e2a20aeb2c100d80a2006a7227.png为方法中引入的参数,用于最小化3fe5ee4ffdba62a5093983e1742da179.png。在这种方法中,46092c79dd8b9efa7d6958b6e84aefef.png

3.2.Editing 算法。Editing算法97c4291c2ea446c7f111acd918d5c83c.png根据ff40e4cecfc76ad7ec4463b048e910ff.png和多模态引导集合74a5c4c7ed2c52d3cf8b65d6b85083b3.png来生成最终的编辑结果9ffef4ff0715aa6a74352919b6b67cb2.png。包含attention-basedb837fe2ecfc4fcfb614f7b40ab78de7a.png,blending-based126420d686a045323bb04e49cfed9984.png,score-based7ee9e62d5a531d8cc9458515ca0a40d9.png以及optimization-based49136f81383eefd193d3d2fcb8693694.png的editing算法。其可以被形式化为:

6c9b6dd1df57f2f2e685a5e4ea1cf43f.png

特别地,对于每一步的反向过程,ae265cc63854d5addbc9b34e614f8cc0.png进行了如下操作:

ef4a8c502183d389cbd1f2daa03381b7.png    

其中dbd7e2d3e290b69490a17c0fe9c8f4a9.png中的操作表示编辑算法对于扩散模型采样过程fe2bfc0328ed224c922a205562d52c64.png的干预,用于保证编辑后的图像b23d88150d1367a7b1695764b7aaee5d.png与源图像集合96d38ec661a3f0947f037530f0c025b9.png的一致性,并反应出0ff986e93f5fe93cd4c4d4b55d379d50.png中引导条件所指明的视觉变换。

特别地,我们将无干预的编辑过程过程视作为普通版本的编辑算法4d3e959afbc05558669feb526caed8a9.png。其形式化为:

a2f85185851d0cf81a8d2f6c8a4d93be.png

Attention-based editing0de311b7e2dc9550eabd003a111d5dc6.png的形式化过程:

a3a5fac90f1bc297a4bf12964ae8b85f.png

Blending-based editingc18950650feb231e3047e20fc0d228e5.png的形式化过程:

788bd9f19e786c51666de7148ce4f944.png

Score-based editing5d1bceaca0fac0b3dc91322569e0d723.png的形式化过程:

e7d7c79b9928813b32660a9c0b9ad4de.png

Optimization-based editing7e18fb0984351f966074142f47f360f7.png的形式化过程:

dbb98e6072aad8a3dedf684e2c6e3edd.png

3.3 Training-Based 的编辑方法。与training-free的方法不同的是,training-based算法通过在任务特定的数据集中直接学习源图像集合到编辑图像的映射。这一类算法可以看作是tuning-based inversion的扩展,即通过额外引入的参数将源图像编码到生成分布中。在这类算法中,最重要的是如何将源图像注入到T2I模型中,以下是针对不同编辑场景的注入方案。

Content-aware 任务的注入方案:   

c0b32dfbb9e9b4bff1233555d224deef.jpeg

图3. Content-aware 任务的注入方案

Content-free 任务的注入方案:

100c0108757371632385f4db303a3d9a.jpeg

图3. Content-free 任务的注入方案

4. 统一框架在多模态编辑任务中的应用

本文通过定性实验说明了各个组合在多模态编辑任务中的应用:

db0bbc446c1340c4e489bb275c685186.jpeg

图4. 关于attention-based editingf2cf6f3e095562f71402c8458533848d.png的算法组合的应用

482253091819c3f0e3516da468d29607.jpeg

图5. 关于blending-based editing12d78fe2acc7a39d60f6240c7a7e3daa.png的算法组合的应用

0b7f59419bb8059cd83dc204a48d7a36.jpeg

图6. 关于score-based editingf03d286c4338d8cb72cdee1129913187.png的算法组合的应用

d55fb456873ffeb779bb6a7960c15764.jpeg

图7. 关于optimization-based editinge966b844bb9996d3c3998c1160ddb372.png的算法组合的应用

具体的分析请查阅原始论文。

5.不同组合在文本引导的编辑场景下的比较

对于常见的文本引导的编辑任务,本文通过设计了多个具有挑战性的定性实验,以说明不同组合所适合的编辑场景。此外,本文也相应地收集了高质量和具有一定难度的数据集,以定量地说明各种组合中的先进算法在不同场景下的性能。

对于 content-aware任务,我们主要考虑对象操作(增/删/替换),属性改变,风格迁移。特别地,我们考虑了具有挑战性的实验设置:1.多目标编辑。2.对于图像的语义布局影响较大的用例。我们也收集了这些复杂场景的高质量图片,并对不同组合中的先进算法进行全面的定量地比较。

29b2363dd6e8df9a13f7565e9cff825d.png

图8.Content-aware任务中各个组合的定性比较,从左至右分别是da256a3dd4e7b812013d0e7e61e67bd9.png

关于结果的分析以及更多的实验结果请查阅原始论文。

对于 content-free任务,我们主要考虑基于主体驱动的(subject-driven)客制化任务。并考虑了多种场景,如更换背景,与物体的交互,行为的改变,以及风格的改变。我们也定义了大量的文本引导模板,对以各个方法的整体性能进行定量分析。   

062945badec720adfcf6b8bb0aa6ce0d.png

图9. Content-free任务中各个组合的定性比较,从左至右分别是3d5084f627c9dcce4f5a37d02bc71721.png

关于结果的分析以及更多的实验结果请查阅原始论文。

6.未来可以进行的方向:

此外本文也给出了一些未来的可能一些研究方向分析。这里给出content-aware 任务和content-free 任务的挑战作为例子。

6.1. Content-aware 任务的挑战。对于content-aware 编辑任务的挑战,现有方法无法同时处理多种编辑场景和控制信号。这一限制迫使应用在不同任务之间切换合适的后端算法。此外,一些高级方法在易用性方面不友好。某些方法需要用户调整关键参数以获得最佳结果,而其他方法则需要繁琐的输入,例如源和目标提示,或辅助掩码。   

6.2,Content-free 任务的挑战。对于content-free 编辑任务,现有方法在测试时调优过程冗长且存在过拟合问题 。一些研究旨在通过优化少量参数或从头开始训练模型来缓解这一问题。然而,它们常常会丢失个性化主体的细节,或表现出较差的泛化能力。此外,当前方法在从少量图像中提取抽象概念方面也有所不足,它们无法完全将所需概念与其他视觉元素分离开来。

更多的研究方向内容可以查阅原始论文。

何恺明在MIT授课的课件PPT下载

在CVer公众号后台回复:何恺明,即可下载本课程的所有566页课件PPT!赶紧学起来!

CVPR 2024 论文和代码下载

在CVer公众号后台回复:CVPR2024,即可下载CVPR 2024论文和代码开源的论文合集

Mamba、多模态和扩散模型交流群成立

 
 
扫描下方二维码,或者添加微信:CVer5555,即可添加CVer小助手微信,便可申请加入CVer-Mamba、多模态学习或者扩散模型微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF、3DGS、Mamba等。
一定要备注:研究方向+地点+学校/公司+昵称(如Mamba、多模态学习或者扩散模型+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

 
 
▲扫码或加微信号: CVer5555,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集近万人!

▲扫码加入星球学习
 
 
▲点击上方卡片,关注CVer公众号
整理不易,请赞和在看
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值