ECCV 2024 | 北大等提出GiT:通用视觉Transformer

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【Mamba/多模态/扩散】交流群

添加微信:CVer5555,小助手会拉你进群!

扫描下方二维码,加入CVer学术星球!可以获得最新顶会/顶刊上的论文idea和CV从入门到精通资料,及最前沿应用!发论文/搞科研/涨薪,强烈推荐!

eba2c8649e1c4e3ca3c503b9f9aa41d8.jpeg

作者:Latte拿铁(来源@知乎)

https://zhuanlan.zhihu.com/p/687763586

GiT是一个多任务视觉模型,跨越五个代表性基准进行联合训练,无需特定任务的微调。它在通用性能上建立了一个新的基准,并促进了任务之间的相互增强,导致与孤立训练相比显著的改进。

GiT: Towards Generalist Vision Transformer through Universal Language Interface

5e03457945c032e9c33b1092bfa2b6a3.png

代码:https://github.com/Haiyang-W/GiT

论文:https://arxiv.org/abs/2403.09394

本文提出了一种简单而有效的框架,名为GiT,仅通过基本的ViT即可同时应用于各种视觉任务。受到在大型语言模型(LLMs)中广泛使用的多层Transformer架构(例如GPT)的普适性的启发,我们试图扩大其范围,使其成为一个强大的视觉基础模型(VFM)。然而,与语言建模不同,视觉任务通常需要特定的模块,比如用于检测的边界框头和用于分割的像素解码器,这极大地阻碍了在视觉领域应用强大的多层Transformer。为了解决这个问题,我们设计了一个通用的语言接口,使成功的自回归解码能够灵活统一各种视觉任务,从图像级理解(例如字幕生成),到稀疏感知(例如检测),再到密集预测(例如分割)。基于以上设计,整个模型仅由ViT组成,没有任何特定的添加,提供了显著的架构简化。GiT是一个多任务视觉模型,跨越五个代表性基准进行联合训练,无需特定任务的微调。有趣的是,我们的GiT在通用性能上建立了一个新的基准,并促进了任务之间的相互增强,导致与孤立训练相比显著的改进。这反映了LLMs中观察到的类似影响。通过对27个数据集进行进一步丰富的训练,GiT在各种任务上取得了强大的零样本结果。由于其简单的设计,这一范式有望缩小视觉和语言之间的架构差距。

Subjects:Computer Vision and Pattern Recognition (cs.CV)
Cite as:arXiv:2403.09394 [cs.CV]
4cba32728db5ceb66cd52558d36cee6a.jpeg

动机

  • 受到在大型语言模型中广泛使用的多层Transformer架构的启发,如GPT。

  • 希望将这种普适性应用于视觉任务,构建一个强大的视觉基础模型。

468ef3e48d26431e6c87b249bb13216c.jpeg

方法

  • 提出了一种名为GiT的简单而有效的框架。

  • 设计了一个通用的语言接口,使得自回归解码能够灵活统一各种视觉任务。

  • 整个模型仅由ViT组成,没有任何特定的添加,实现了架构的显著简化。

b4905c1aab049a618d768d970ed6f218.jpeg

结果

  • GiT是一个多任务视觉模型,跨越五个代表性基准进行联合训练,无需特定任务的微调。

  • 在通用性能上建立了一个新的基准,并促进了任务之间的相互增强,导致与孤立训练相比显著的改进。

629292de96736747ae95b5cc0928580f.jpeg 16d96078e93927851a15c709e4064b26.jpeg 88fa65a065493c814ac16f96f5ecbfc7.jpeg 444656b4a5f9b9cbc03ccaea232027c9.jpeg e7785f69dcc5eec73ed58ae3c8f6d721.jpeg b3b29680314c6ece260d079927738a61.jpeg 5a40e3fa655226b0d34d92788048dd98.jpeg 52b084533444d0324b5fd2c940c6f701.jpeg

何恺明在MIT授课的课件PPT下载

在CVer公众号后台回复:何恺明,即可下载本课程的所有566页课件PPT!赶紧学起来!

CVPR 2024 论文和代码下载

在CVer公众号后台回复:CVPR2024,即可下载CVPR 2024论文和代码开源的论文合集

Mamba和Transformer交流群成立

 
 
扫描下方二维码,或者添加微信:CVer5555,即可添加CVer小助手微信,便可申请加入CVer-Mamba或者Transformer微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF、3DGS、Mamba等。
一定要备注:研究方向+地点+学校/公司+昵称(如Mamba或者Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

 
 
▲扫码或加微信号: CVer5555,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集近万人!

▲扫码加入星球学习
 
 
▲点击上方卡片,关注CVer公众号
整理不易,请赞和在看
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值