我爱计算机视觉 | ECCV2024 | AddressCLIP:一张图实现街道级定位,端到端图像地理定位大模型

本文来源公众号“我爱计算机视觉”,仅用于学术分享,侵权删,干货满满。

原文链接:ECCV2024 | AddressCLIP:一张图实现街道级定位,端到端图像地理定位大模型

拔草星人的好消息来啦!

中科院自动化所和阿里云一起推出了街景定位大模型,只要一张照片就能实现街道级精度的定位。

有了模型的帮助,再也不用害怕遇到种草“谜语人”了。

比如给模型看一张旧金山的街景之后,它直接给出了具体的拍摄位置,并列举了附近的多个候选地址。

该模型名为AddressCLIP,基于CLIP构建。

相关论文AddressCLIP: Empowering Vision-Language Models for City-wide Image Address Localization已入选顶会ECCV2024。

传统的图像位置识别往往致力于以图像检索的方式来确定图像的GPS坐标,这种方法称为图像地理定位。

<
### 图像地理定位相关资源 #### 1. 地理信息系统 (GIS) 平台 主流的 GIS 平台提供了强大的图像地理定位功能,支持遥感影像的空间校准和坐标系转换。这些平台通常集成了多种工具来处理和分析空间数据。 - **ArcGIS** 是由 Esri 开发的一款广泛使用的 GIS 应用程序,它不仅能够实现高精度的地,还具备丰富的插件用于遥感数据分析[^1]。 - **QGIS** 是一款开源的桌面 GIS 软件,具有灵活的数据导入导出能力以及众多第三方扩展模块,适合个人开发者和技术团队使用。 #### 2. 编程库与框架 对于希望深入定制开发的应用场景来说,编程库可以提供更底层的支持和服务接口。 - **GDAL/OGR**: 这是一个读写栅格和矢量地理空间数据格式的翻译库集合,同时也包含了命令行实用程序来进行简单的操作。GDAL 支持超过80种不同的文件格式,并且可以在 C/C++、Python等多种语言环境中调用。 - **OpenCV-Python**: OpenCV 是一个计算机视觉库,而 Python 绑定版本则让使用者可以通过简洁高效的语法完成复杂的图像处理任务,包括但不限于特征检测、匹配等可用于辅助地理配准的工作流程。 ```python import cv2 from osgeo import gdal, ogr ``` #### 3. 数据集与在线服务 获取高质量的基础地和其他类型的地理信息是成功实施项目的关键因素之一。 - **Google Earth Engine(GEE)** 提供了一个云服务平台,允许研究人员访问大量的卫星影像存档并执行大规模时空分析;此外 GEE API 可以帮助自动化工作流中的某些环节,比如批量下载指定区域内的历史片序列以便后续建模训练或其他用途。 - **Microsoft Bing Maps SDKs & APIs** 和其他商业供应商也推出了各自的解决方案,它们往往附带详尽文档说明如何快速上手构建基于位置的服务应用程序。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值