点击下方卡片,关注“CVer”公众号
AI/CV重磅干货,第一时间送达
点击进入—>【医学分割】投稿交流群
添加微信号:CVer2233,小助手会拉你进群!
扫描下方二维码,加入CVer学术星球!可以获得最新顶会/顶刊上的论文idea和CV从入门到精通资料,及最前沿应用!发论文/搞科研/涨薪,强烈推荐!
转载自:人工智能学起来
论文题目:S3-Mamba: Small-Size-Sensitive Mamba for Lesion Segmentation
论文地址:https://arxiv.org/abs/2412.14546
代码:https://github.com/ErinWang2023/S3-Mamba

创新点
本文引入增强通道特征块(Enhanced Channel Feature Block, EnCFBlock),通过通道注意力(channel-wise attention)动态调整每个通道的权重,突出小病灶的特征,同时抑制背景噪声。使用两个残差连接(residual connections)来保留局部细节,避免在深层网络中丢失重要信息。去掉原有的深度卷积(DWConv)层,减少对小病灶特征的过度平滑。
本文TCMA 将输入图像特征、中间层特征和边缘特征划分为不同尺度的 patch,并通过张量操作(tensor-based attention)动态调整这些特征的权重。通过多尺度特征的交互,TCMA 能够同时利用空间、类别和边缘特征,增强对小病灶的分割能力。TCMA 的输出用于调节解码器层的特征,从而在全局上下文和局部细节之间取得平衡。
本文提出一种基于病灶大小和样本难度的课程学习策略,通过难度评估器(Difficulty Measurer)动态调整样本权重。在训练过程中,模型逐渐从简单样本(如大病灶)过渡到复杂样本(如小病灶),确保模型能够更好地关注小病灶的分割。引入正则化约束(regularization constraints),防止模型过度关注特定样本,从而实现更平衡的学习过程。
方法
本文提出了一种名为 Small-Size-SSensitive Mamba (S3-Mamba) 的医学图像分割模型,专门针对小病灶的分割问题。研究方法围绕三个核心技术创新展开:增强视觉状态空间块(Enhanced Visual State Space Block, EnVSSBlock)、基于张量的跨特征多尺度注意力机制(Tensor-based Cross-feature Multi-scale Attention, TCMA)以及正则化课程学习策略(Regularized Curriculum Learning)。这些方法共同作用,提升了模型对小病灶的分割能力。
S3-Mamba 模型的整体架构图
这是 S3-Mamba 模型的整体架构图,包括 EnVSSBlock 和 TCMA 的详细设计。
(a) Overview of S3-Mamba:展示了基于 U-Net 架构的整体框架,包括编码器、解码器以及关键模块(EnVSSBlock 和 TCMA)的位置。
(b) Detailed architecture of TCMA:详细展示了 TCMA 的结构,包括输入图像特征、中间层特征和边缘特征如何通过多尺度张量操作进行融合。
(c) Detailed structure of EnVSSBlock:展示了 EnVSSBlock 的结构,包括增强通道特征块(EnCFBlock)和残差连接的设计。
(d) Detailed structure of EnCFBlock:进一步展示了 EnCFBlock 的细节,如何通过通道注意力机制调整特征权重。
(e) Architecture of the regularized curriculum learning strategy:展示了课程学习策略的整体设计,包括难度评估器和训练调度器。

比较模型
本图用于比较不同分割模型的计算复杂度(FLOPs)、Dice 相似系数(DSC)和模型大小。S3-Mamba 在 27.58G FLOPs 的计算复杂度下,实现了 75.93% 的 DSC,同时模型大小仅为 4.64M 参数。相比之下,其他模型如 UNETR++ 和 ViTSeg 在计算复杂度和分割精度上均不如 S3-Mamba,证明了 S3-Mamba 在小病灶分割任务中的高效性和优越性。

实验结果

本表格展示了 S3-Mamba 与其他九种最先进的分割模型在 ISIC2018 和 CVC-ClinicDB 数据集上的性能比较。表格列出了不同模型在小(S)、中(M)和大(L)病灶上的性能,包括平均交并比(mIoU)、Dice 相似系数(DSC)、准确率(ACC)、特异性(SPE)和敏感性(SEN)。S3-Mamba 在小病灶的 mIoU 和 DSC 上表现最佳,分别达到了 77.13% 和 87.09%。这表明 S3-Mamba 在处理小病灶时具有显著优势,尤其是在细节和轮廓的捕捉上。其他模型如 VmUnet 在大病灶分割上表现较好,但在小病灶上不如 S3-Mamba。传统模型如 U-Net 在小病灶分割上表现较差,而基于 Transformer 的模型(如 H2Former)在某些指标上接近 S3-Mamba,但在整体性能上仍稍逊一筹。S3-Mamba 通过 EnVSSBlock 和 TCMA 的设计,在小病灶分割上显著优于其他模型,尤其是在多尺度特征融合和通道注意力方面。
何恺明在MIT授课的课件PPT下载在CVer公众号后台回复:何恺明,即可下载本课程的所有566页课件PPT!赶紧学起来!
CVPR 2025 论文和代码下载
在CVer公众号后台回复:CVPR2025,即可下载CVPR 2025论文和代码开源的论文合集
ECCV 2024 论文和代码下载
在CVer公众号后台回复:ECCV2024,即可下载ECCV 2024论文和代码开源的论文合集
医学分割和论文投稿交流群成立
扫描下方二维码,或者添加微信号:CVer2233,即可添加CVer小助手微信,便可申请加入CVer-医学分割和论文投稿微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF、3DGS、Mamba等。
一定要备注:研究方向+地点+学校/公司+昵称(如医学分割+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群
▲扫码或加微信号: CVer2233,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集上万人!
▲扫码加入星球学习
▲点击上方卡片,关注CVer公众号
整理不易,请点赞和在看