人工智能学习03--mnist手写数字实战

在这里插入图片描述
在这里插入图片描述
在输入神经网络前对数据进行处理,而不是把28*28的图片直接展平输入网络
在这里插入图片描述
https://blog.csdn.net/CP18281638639/article/details/117418615 卷积、池化、全连接层

  1. 卷积
    卷积操作最终要得到:使损失函数最小(预测值和真实值最接近)时的卷积核的内容
    在这里插入图片描述
    2 . 池化
    提输入参数,提高效率
    在这里插入图片描述
    3 . 激活
    提高运算速率,同时增加一些非线性处理
    在这里插入图片描述
    在这里插入图片描述
  • 叠加
    在这里插入图片描述

  • 输入神经网络

  • 卷积后的尺寸计算
    在这里插入图片描述
    步长越小,遍历地越仔细
    在这里插入图片描述
    默认不加边
    在这里插入图片描述
    卷积:提取特征
    池化:求最大或平均值(不需要训练)
    在这里插入图片描述
    (3*3+1(1个偏置项))*2(filters,卷积核数量)
    在这里插入图片描述

  • LeNet-5网络

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

·······················

在这里插入图片描述
在这里插入图片描述
给图片增加维度:数量(前),几层(后)

把自己画好的图片保存在与程序相同的文件夹中
在这里插入图片描述
读取图片两个参数:(图片名,读取图片的方式(0 灰度;1 彩色))
在这里插入图片描述
返回了十个概率值
在这里插入图片描述
看看这个概率对应哪个数字

读取自己的这个图片,经过预处理之后把它作为输入加载到模型中,得到预测结果

自己画了一个9
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值