人工智能学习07--pytorch16--MobileNet网络详解

MobileNet详解

在这里插入图片描述在这里插入图片描述

DW卷积:

在这里插入图片描述
每个卷积核的深度为1,而不是像之前一样等于特征矩阵的深度。
每个卷积核只负责输入特征矩阵的一个channel进行卷积运算,再得到相应的输出矩阵的一个channel。
因为每个卷积核只负责一个channel,则采用的特征矩阵的深度就应该与输入特征矩阵的深度相同,这样即可确保每一个卷积核负责一个channel。
又因为每个卷积核与输入特征矩阵的一个channel进行卷积之后,得到一个输出特征矩阵的channel,则输出特征矩阵的深度与卷积核的个数相同,进一步与输入特征矩阵的深度相同。

深度可分的卷积操作

在这里插入图片描述
DW卷积+PW卷积
PW卷积:普通卷积,但是卷积核大小等于1。由上图可以看出,每个卷积核的深度与输入特征矩阵的深度相同,输出特征矩阵的深度与卷积核的个数相同。

相比普通卷积而言,参数的变化:
在这里插入图片描述
均可得到深度为4的特征矩阵。
在这里插入图片描述
彩色图像 32个卷积核
在这里插入图片描述
针对MobileNet中部分卷积核废掉的问题,设计了MobileNetV2👇

MobileNetV2详解

在这里插入图片描述
在这里插入图片描述

之前瓶颈结构是因为传统卷积运算量大,可以减少运算量,DW本身减少了运算量,使用倒结构,虽然增大一些运算量,但增大了卷积核个数,可以解决v1版本的缺点

relu6:relu激活函数的改进版
在这里插入图片描述
在这里插入图片描述
对于输入特征矩阵,高x宽x深度:
使用1*1卷积核(个数tk)进行升维处理,所以深度变为tk

进行dw卷积:输出深度与输入深度一样
步距为s,输入特征矩阵的高和宽缩减为原来的1/s倍

1x1的卷积层:采用降维操作,所采用的卷积核个数为k’,所以将特征矩阵的深度变为k’。

在MobileNetV2网络的到残差结构中,不是每一个倒残差结构中都有shortcut捷径分支(上图右下角框)

在这里插入图片描述
每一个block所对应的第一层的bottleneck的步距,其他的都是等于1。若n=2,则bottleneck重复两次,第一层的步距为表里那个s,第二层的就是1。
拓展因子:升维的倍速
在这里插入图片描述
↓这个卷积层与全连接层的作用一样,k为分类个数

在这里插入图片描述
基本上已经实现,在移动设备以及嵌入设备上跑深度学习模型了。

使用pytorch搭建MobileNetV2并基于迁移学习训练

modelv2.py

  • 定义基础操作:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 搭建倒残差结构
    在这里插入图片描述
    在这里插入图片描述

  • MobileNetV2网络结构
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

train.py

  • 模型权重加载
    下载预训练权重
    在这里插入图片描述
    在这里插入图片描述
    与之前训练脚本不一样的地方:

  • 实例化模型
    在这里插入图片描述
    在这里插入图片描述
    up训练时发现,同样都是调整最后一层,在CPU上训练,pytorch的速度比tensorflow慢得多。
    在这里插入图片描述
    ↑ “理论上”
    可能涉及到一些计算机底层的知识。

predict.py

使用与训练过程中相同的预处理方法
……
载入图片
……
添加batch维度
……
实例化模型
……
载入train.py中训练好的模型权重
……
禁止在预测过程中跟踪误差梯度信息
……
squeeze压缩batch维度
softmax 输出 → 概率分布
argmax 获取最大预测值所对应的索引

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值