外显率&显性上位

外显率(penetrance):
外显率是指条件下,群体中某一基因型(通常在杂合子状态下)个体表现出相应表型的百分率。外显率等于100%时称为完全外显(complete penetranc)低于100%时则为不完全外显(incomplete penetranc)或外显不全。譬如说,玉米形成叶绿素的基因型AA或Aa,在有光的条件下,应该 100%形成叶绿体,基因A的外显率是100%;而在无光的条件下,则不能形成叶绿体,我们就可以说在无光的条件下,基因A的外显率为0。另外如在黑腹果 蝇中,隐性的间断翅脉基因i的外显率只有90%,那也就是说90%的ii基因型个体有间断翅脉,而其余10%的个体是野生型,但它们的遗传组成仍然都是 ii。
 
显性上位(dominant epitasis):
在上位效应中,起抑制作用的是一个显性基因,孟德尔比率被修饰为12:3:1的现象。应用学科: 遗传学(一级学科);经典遗传学(二级学科)。
在有些情况下,一对基因可以影响另一对非等位基因的效应,这种非等位基因间的相互作用方式称为上位作用。
某一显性基因对另一对显性基因起遮盖作用,并表现出自身所控制的形状,这种基因被称为显性上位作用
 
一对基因 显性基因的表现受到另一对 非等位基因的作用,这种非等位基因间的抑制或遮掩作用叫上位效应。起 抑制作用的基因称为 上位基因,被抑制的基因称为 下位基因
(1) 显性上位:一对 基因中的 显性基因阻碍了其他对基因的作用。
(2) 隐性上位:一对隐性基因对另一对基因起阻碍作用时叫隐性上位。
 
 
 

转载于:https://www.cnblogs.com/Acceptyly/p/3876456.html

资源下载链接为: https://pan.quark.cn/s/ab08c24cda4d 本项目基于 PyTorch 实现了 CSRNet(卷积稀疏表示网络)人群计数模型。CSRNet 是一种高效且精准的人群密度估计方法,尤其适合高密度场景下的人群计数。该模型借助卷积神经网络(CNN)的特性,利用稀疏表示来应对复杂背景和密集人群的挑战。以下将详细介绍 CSRNet 的核心概念、结构及实现过程,并阐述人群计数的重要性。 人群计数在公共场所安全监控、交通管理和大型活动组织等领域极为关键。准确估计人群数量有助于保障安全和优化管理。传统计数方法如人工计数或基于规则的方法效低且易出错而,深度学习技术的引入,尤其是 CSRNet 这类模型,显著提高了计数的准确性和效。 CSRNet 的核心在于其深度卷积网络结构和稀疏表示能力。该模型通过多尺度特征提取,适应不同大小的人头。其架构包含多个卷积层,每层后接 Leaky ReLU 激活函数,增强非线性表达能力。此外,CSRNet 引入了空洞卷积(也称 atrous convolution),可在不增加参数数量的情况下扩大感受野,更高效地捕捉大范围信息。具体架构包括:输入层接收预处理后的图像;基础网络通常使用预训练的 VGG16 提取多层次特征;多尺度特征融合通过不同扩张的空洞卷积获得不同分辨的特征图;解码器利用反卷积操作将低分辨特征图恢复至原始尺寸,结合多尺度信息重建上下文;稀疏表示层是 CSRNet 的独特之处,通过稀疏编码和解码,将高维特征转换为低维稀疏表示,降低背景噪声影响,提升人头检测精度;输出层通过 1×1 卷积将特征图转化为人群密度图,再经全局平均池化和全连接层得到最终计数结果。 在实现过程中,需注意以下几点:数据预处理,如缩放、归一化、增强等,以提升模型泛化能力;训练策略,包括数据集划分、学习调度、损失函数选择(如
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值