Bonferroni校正法

Bonferroni校正:如果在同一数据集上同时检验n个独立的假设,那么用于每一假设的统计显著水平,应为仅检验一个假设时的显著水平的1/n

http://baike.baidu.com/view/1217813.htm?fr=aladdin

 

Bonferroni校正法:

此方法是在进行两两比较时对检验水准进行调整的办法,但是该方法在比较的次数较多时,就不太适合,因为校正后的检验水准会过小。此时可采用sidark法进行多重比较(仍然是对检验水准进行调整)。

统计学中一般以小概率作为判断差异是否显著的标准,通常都以0.05或0.01作为判断标准。在多重比较中, bonferroni是以t分布作为检验分布的,但多重比较时若均以0.05作为小概率的话,每次比较就会有5%犯一型错误的可能。但如果有n次比较,如有4个组要做6次比较,则有C6(2)*5%一型错误发生的概率,不符合小概率判断的原则。因此,bonferroni中,将小概率0.05或0.01除以要比较的次数n,作为判断显著性的小概率,这样,多重比较总的一型错误发生的概率不会超过0.05或0.01。

控制累积Ⅰ类错误概率增大的方法
采用Bonferroni法,SNK法和Tukey法等方法
累积Ⅰ类错误的概率为α'
当有k个均数需作两两比较时,比较的次数共有c= = k!/(2!(k-2)!)=k(k-1)/2
设每次检验所用Ⅰ类错误的概率水准为α,累积Ⅰ类错误的概率为α',则在对同一实验资料进行c次检验时,在样本彼此独立的条件下,根据概率乘法原理,其累积Ⅰ类错误概率α'与c有下列关系:
α'=1-(1-α)c (8.6)
例如,设α=0.05,c=3(即k=3),其累积Ⅰ类错误的概率为α'=1-(1-0.05)3 =1-(0.95)3 = 0.143
一,Bonferroni法
方法:采用α=α'/c作为下结论时所采用的检验水准.c为两两比较次数, α'为累积I类错误的概率.
例8-1四个均值的Bonferroni法比较
设α=α'/c=0.05/6=0.0083,由此t的临界值为t(0.0083/2,20)=2.9271
Bonferroni法的适用性
当比较次数不多时,Bonferroni法的效果较好.
但当比较次数较多(例如在10次以上)时,则由于其检验水准选择得过低,结论偏于保守.

转载于:https://www.cnblogs.com/Acceptyly/p/4011611.html

### Bonferroni Post-Hoc Analysis 的方与应用 Bonferroni正是一种控制多重比较中的I型错误率(即假阳性率)的方。当执行多次统计测试时,每次单独测试的显著性水平可能会累积增加整体犯错的概率。为了降低这种风险,Bonferroni正通过调整显著性阈值来减少误报的可能性。 具体而言,在进行n次独立的假设检验时,如果希望总体的显著性水平保持在α,则每项单一测试的显著性水平应设定为α/n[^1]。这种方简单易行,适用于多种场景下的事后分析(post-hoc analysis),尤其是在ANOVA之后需要进一步探索哪些组之间存在差异的情况下。 #### 实现过程 以下是实现Bonferroni正的一个基本流程: 1. **计算原始p值**:对于每一对比试验,先得到未经修正的p值。 2. **调整临界值**:设总显著性水平为0.05,若有k个成对比较,则新的显著性标准变为0.05/k。 3. **判定显著性**:将各对比实验所得的实际p值同上述调整后的临界值相比较;仅当实际p值小于等于该临界值时才认为此对比具有统计学意义。 下面给出一段Python代码示例展示如何手动完成这一操作: ```python def bonferroni_correction(p_values, alpha=0.05): num_tests = len(p_values) corrected_alpha = alpha / num_tests significant_results = [] for p_value in p_values: if p_value <= corrected_alpha: result = True # Significant difference found. else: result = False significant_results.append(result) return significant_results # Example usage: original_pvalues = [0.01, 0.04, 0.07] adjusted_significance = bonferroni_correction(original_pvalues) print(adjusted_significance) ``` 尽管Bonferroni因其保守性质而广受好评,但它也可能带来较高的II类误差概率(power loss), 特别是在样本数量有限或者效应较小时尤为明显。因此,在某些情况下可能考虑采用其他更灵活的选择比如Holm-Bonferroni method 或者False Discovery Rate (FDR).
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值