python opencv实现相机内参标定

1.内容简介

使用python opencv 标定相机内参。

2.实现方案

(1)从网络上下载一张棋盘格图片,粘贴到word文档上,设定尺寸大小为合适值,作为标定板。
在这里插入图片描述
(2)在不同距离,不同角度下用手机相机拍摄棋盘图片。

在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述

(3)调用opencv findChessboardCornerscornerSubPix函数提取棋盘的角点。
在这里插入图片描述
(4)调用opencv calibrateCamera函数标定相机内参。

3 代码实现

import glob

import cv2
import numpy as np
from PIL import Image

# 8行11列棋盘角点
CHECKERBOARD = (8, 11)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

# 世界坐标中的3D角点,z恒为0
objpoints = []
# 像素坐标中的2D点
imgpoints = []

# 利用棋盘定义世界坐标系中的角点
objp = np.zeros((1, CHECKERBOARD[0] * CHECKERBOARD[1], 3), np.float32)
objp[0, :, :2] = np.mgrid[0:CHECKERBOARD[0], 0:CHECKERBOARD[1]].T.reshape(-1, 2)

# 从文件夹中读取所有图片
images = glob.glob('chessboard_images/*.jpg')
gray = None
for i in range(len(images)):
    fname = images[i]
    img = cv2.imread(fname)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # 查找棋盘角点
    ret, corners = cv2.findChessboardCorners(gray, CHECKERBOARD, cv2.CALIB_CB_ADAPTIVE_THRESH +
                                             cv2.CALIB_CB_FAST_CHECK + cv2.CALIB_CB_NORMALIZE_IMAGE)
    """
    使用cornerSubPix优化探测到的角点
    """
    if ret == True:
        objpoints.append(objp)
        corners2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
        imgpoints.append(corners2)
        # 显示角点
        img = cv2.drawChessboardCorners(img, CHECKERBOARD, corners2, ret)
        new_img = Image.fromarray(img.astype(np.uint8))
        new_img.save('chessboard_{}.png'.format(i))
        # plt.imshow(img)
        # plt.show()
    # cv2.imshow('img', img)
    # cv2.waitKey(0)

# cv2.destroyAllWindows()
# 标定
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
print("重投影误差:\n")
print(ret)
print("内参 : \n")
print(mtx)
print("畸变 : \n")
print(dist)
print("旋转向量 : \n")
print(rvecs)
print("平移向量 : \n")
print(tvecs)

4 标定结果

试验相机标定后得到的相机内参矩阵为
在这里插入图片描述
镜头畸变值为:
在这里插入图片描述

相机内参标定是通过对相机进行一系列的参数估计,以便能够准确地将图像坐标转换为真实世界中的物体坐标。在Python中,可以使用OpenCV库来进行相机内参标定。 以下是一个基本的相机内参标定Python代码示例: ```python import numpy as np import cv2 # 定义棋盘格尺寸 pattern_size = (8, 6) # 准备用于保存棋盘角点的列表 obj_points = [] # 保存物体点的3D坐标 img_points = [] # 保存图像点的2D坐标 # 生成物体点的坐标 objp = np.zeros((np.prod(pattern_size), 3), np.float32) objp[:, :2] = np.mgrid[0:pattern_size[0], 0:pattern_size[1]].T.reshape(-1, 2) # 读取图像 images = [...] # 填入需要标定的图像路径列表 for img_path in images: img = cv2.imread(img_path) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 查找棋盘角点 ret, corners = cv2.findChessboardCorners(gray, pattern_size, None) if ret: obj_points.append(objp) img_points.append(corners) # 在图像上绘制角点并显示 cv2.drawChessboardCorners(img, pattern_size, corners, ret) cv2.imshow('Chessboard Corners', img) cv2.waitKey(500) # 显示图片500毫秒 cv2.destroyAllWindows() # 进行相机内参标定 ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, gray.shape[::-1], None, None) # 打印相机内参矩阵和畸变系数 print("相机内参矩阵:") print(mtx) print("\n畸变系数:") print(dist) ``` 上述代码中,首先定义了棋盘格的尺寸,然后准备用于保存棋盘角点的列表。接下来,生成物体点的3D坐标,并读取需要标定的图像。使用`cv2.findChessboardCorners()`函数查找图像中的棋盘角点,并将找到的角点保存到`img_points`列表中。然后在图像上绘制角点并显示。 最后,使用`cv2.calibrateCamera()`函数进行相机内参标定,返回相机内参矩阵和畸变系数。打印出这些参数即可完成相机内参标定。 请注意,上述代码仅提供了一个基本的相机内参标定示例,实际应用中可能需要更多的处理和参数调整。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

安布奇

喜欢的朋友给点支持和鼓励吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值