医疗器械化学表征的AET校准

医疗器械的化学表征需要多高的灵敏度?基于致癌强度数据库对分析评价阈值的校准

摘要

化学表征是医疗器械安全性评价的一个组成部分。建议使用分析评价阈值(AET)来计算所需的分析灵敏度。在计算AET时,应采用1.5 μg/天还是120 μg/天仍缺乏共识,其中较低的数值通常要求超出当前分析能力的灵敏度。本文回顾了致癌强度数据库(CPDB),以比较使用这两个数值计算AET所关联的风险。利用CPDB中非关注队列(非COC)物质的TD50值,外推至超额癌症风险为10−5时的剂量,并计算总剂量。随后比较了使用1.5 μg/天或120 μg/天计算AET时,会导致超额风险的非COC物质数量。在评估的199种物质中,仅两种物质在采用1.5 μg/天计算AET时存在超额风险,而使用120 μg/天时仅多出七种。此外,超过95%的非COC物质在采用120 μg/天计算AET时不会产生超额癌症风险。根据我们的评估,基于120 μg/天的AET对于短期和长期医疗器械的化学表征具有保护性和实用性。

1. 引言

化学表征已成为医疗器械以及基于ISO10993–1(2018)要求的药械组合产品中器械部分的生物学评价的重要组成部分。对于许多器械而言,现有信息通常不足以证明器械中物质(如聚合物添加剂、加工助剂及其降解产物)溶出所导致的毒理学风险处于可接受水平。塞勒等人最近描述了基于建模预测患者暴露的医疗器械组分风险评估策略(塞勒等人,2019年)。然而,目前许多可提取物缺乏足够的数据以支持该方法的应用。在这种情况下,预期与患者接触超过30天的器械通常需按照ISO 10993–18(2020)进行筛选性化学可提取物研究。在此项测试中,通过在升高温度条件下使用极性、非极性和混合极性溶剂对器械进行提取,以尽可能确定器械中所有可提取的化学物质(即完全提取)。该方法旨在代表临床使用期间潜在的最坏情况暴露。对所得提取物采用多种方法进行分析,以确定可提取物的化学特性并估计其数量。

1.1. 分析评价阈值(AET)计算

建议在ISO 10993–18中使用分析评价阈值(AET)来计算分析所需 的灵敏度。AET定义为应报告特定可提取物和/或可沥出物化学物质的身份和数量以进行潜在毒理学评估的阈值,这一概念并非全新;它已用于药品行业根据PQRI指南进行的可提取物和可沥出物分析(USP,2020; PQRI, 2006)。ISO 10993–18中AET的计算公式为:
AET = (DBT × (A/(B × C)) / UF
其中:
- A = 是用于生成提取物的医疗器械数量;
- B = 是提取物的体积(以毫升为单位);
- C = 是临床暴露量(在正常临床实践中,用户每天会接触到的独特器械数量);
- DBT = 是基于剂量的阈值(例如 TTC),单位为 μg/天;
- UF = 是不确定性因子,可用于考虑使用筛选方法估计提取物在提取物中浓度时的分析不确定性。

变量A和B分别代表被提取的器械数量和提取物的体积。变量C表示在每次暴露期间与患者接触的器械数量。UF用于考虑筛选性化学表征方法中固有的分析不确定性(例如替代标准品与可提取物之间响应因子的差异)。对于有机可提取物的筛选性化学表征,DBT为毒理学关注阈值(TTC),以μg/天表示。在此计算中,AET以μg/ml为单位表示。当 AET以μg/器械表示时,A和B因子相互抵消,因此AET成为DBT、C和 UF的函数。在本文中,AET通常以每器械μg表示,或在假设为单个器械时简写为μg。

1.2. 关于AETs计算缺乏共识

目前,对于与患者接触超过一天且在穷尽条件下提取的医疗器械,在AET计算中应使用的适当TTC值缺乏共识。根据定义,在完全提取条件下,可提取物的量代表器械中存在的总量。ISO 10993–18提供了一个针对这些器械在完全提取条件下的示例AET计算方法,其中DBT基于{TTC_value}g/天的TTC值(ISO TS 21726)。使用该值作为DBT的理由是,该值是在考虑所有潜在暴露持续时间时最低的TTC值1。然而,一些监管机构(如美国FDA CDRH)要求对于长期患者接触(即>10年)的医疗器械,申办方应使用1.5 μg/天的TTC值作为DBT,这将导致 AET比使用120 μg/天计算出的结果低80倍。使用1.5 μg/天可能导致 AET相当于每器械少于1 μg2,并且分析报告限达到低ng/ml范围。对于需要大体积提取液或大量植入的器械而言,达到如此高的灵敏度可能技术上非常困难,甚至不可行(例如,使用100毫升溶剂提取的器械,假设 UF为5,则要求AET为0.003 μg/ml)。此外,在ng/mL水平上鉴定未知可提取物尤其具有挑战性。重要的是,这种灵敏度水平基于一个固有假设,即存在于医疗器械中的化学物质,其总量若等于或小于1 μg,仍可能对患者构成毒理学风险。

1.3. 使用1.5 μg/天与120 μg/天安全阈值的AETs计算

假设总量为1 μg存在潜在风险可能过于保守。例如,ISO TS 21726中对于超过10年暴露持续时间的TTC为1.5 μg/天,这意味着总质量为5475 μg不太可能构成不可接受的风险。然而,这种解释需要假设暴露持续时间确实超过10年。实际上,可提取物的释放动力学很少已知,因此对于任何可提取物而言,其暴露持续时间理论上可能从一天到器械与患者接触的天数不等。基于ICH M7 指南(2017)的 ISO TS 21726 通过提供多种暴露持续时间对应的毒理学关注阈值(TTC)数值来涵盖这些可能性。其中最低值为暴露持续时间不超过30天时的120 μg/天。如 ICH M7 指南所述,120 μg/天是基于将哈伯法则(即毒理学效应的发生率和/或严重程度取决于总暴露量)应用于终生TTC 1.5 μg/天,并结合根据暴露天数在10至300之间变化的安全系数推导得出(例如,针对1天暴露的 120 μg/天(120 μg)与基于哈伯法则计算的阈值(38250 μg)之间的安全系数约为300)。

ICH M7 指南涵盖除吸入以外的所有暴露途径。类似地,ISO TS 21726也认为这些毒理学关注阈值(TTC)数值通常适用于所有医疗器械,但通过吸入途径暴露的器械除外。因此,对于如植入式器械所产生的肠外暴露,无需额外考虑暴露途径外推的因素。

为了比较在计算AET时使用1.5与120 μg/天的DBT相关联的风险,我们研究了用于推导原始TTC的基础数据库,即Gold致癌强度数据库(CPDB)(戈德等人 1984, 1989, 1995)。检查计算AET的公式可知,当转换为μg/器械时,AET仅取决于DBT、C和UF,且C的最小值为1。假设使用1.13,的UF和1.5 μg/天的DBT,则可能得到的最高AET为1.5 μg/器械4。因此,我们假设,在完全提取条件下测得的总水平低于1.5 μg时,仅有极少数物质会对患者构成毒理学风险,即超额终身癌症风险大于10-55。因此,在相同假设下(包括完全提取条件),将AET提高80倍至120 μg/器械,不会显著增加未能识别出对患者有风险的可提取物的概率。

为了验证该假设,我们识别了CPDB中所有非COC和非排除物质5,获取了它们的TD50值,将剂量线性外推至超额癌症风险为10−5,然后根据研究暴露持续时间计算总剂量。接着,我们比较了基于总剂量外推自AET小于1.5 μg时具有超额癌症风险10−5的非COC物质数量,与基于总剂量外推自AET小于120 μg的物质数量。

2. 材料和方法

2.1. TD50值的获取

我们使用了存档的按化学品分类的CPDB摘要表(戈德等人,1984;戈德等人 1989;戈德等人 1995; https://files.toxplanet.com/cpdb/chemicalsummary.html)来识别具有实验得出的TD50值的物质。我们排除了以下物质条目:金属、类金属和含金属化合物(但以下情况除外:常见的阳离子(如钠)和关注化合物混合物(定义为类黄曲霉毒素化合物、偶氮氧化合物、N‐亚硝基化合物、甾体化合物以及多卤代二苯并‐p‐二噁英和二苯并呋喃(克罗伊斯等人,2004;布比斯等人,2017)。关注化合物混合物通过目视检查物质结构确定。

对致癌强度数据库(CPDB)的一项最新改进是创建了拉萨致癌性数据库(Lhasa CPDB),该数据库使用标准化且透明的方法论重新计算了许多TD50值,使得TD50值现在能够以可重现的方式进行计算(瑟舍等人,2019)。利用拉萨致癌性数据库(瑟舍等人,2019);https://carcdb.lhasalimited.org/carcdb-frontend/),我们检索了该物质的最低拉萨TD50值,而不论物种、暴露途径、暴露持续时间、肿瘤部位或人类相关性如何。

2.2. TD50 分布的比较

基于目视检查、范围、均值、中位数以及多个分位数,对来自戈德和拉萨致癌性数据库的TD50值分布进行了比较,以评估我们的过程是否无意中使其产生偏倚。未对差异进行统计学显著性分析。

2.3. 对应于10−5超额癌症风险的剂量计算

为了比较与10−5的超额癌症风险相对应的剂量,每个TD50通过除以50,000进行线性外推。为了确定总剂量,将每个对应于10−5超额癌症风险的剂量乘以Lhasa CPDB中列出的该研究的暴露持续时间,从而得到单位为毫克/千克的剂量。我们未尝试评估研究质量或用于计算 TD50的剂量‐反应关系。然后将所得数值乘以60公斤患者体重,以将毫克/千克的值标准化为成年患者。

2.4. 与美国环保署IRIS数据库中的口服致癌斜率因子的比较

以 120 μ克/天作为DBT的阈值相当于最大AET为120 μ克,假设每位患者使用一个器械,不确定因子UF为1,并在完全提取条件下进行。假设成年患者的体重为60千克,则对应的总剂量为2 μ克/千克。致癌斜率因子是与终生平均暴露量进行比较的,通常按70年或25,550天计算。因此,对于总剂量为2 μ克/千克的可提取物,其终生平均每日暴露量为7.8 × 10−5 μ克/千克/天,即7.8 × 10−8毫克/千克/天。若某致癌物在此终生每日暴露水平下导致超额癌症风险大于10−5,则其口服斜率因子必须超过1.3 × 102每毫克/千克/天(10−5 ÷ 7.8 × 10−8毫克/千克/天)。同样地,在暴露量为1.5 μ克时,若要超过10−5的超额癌症风险,相应的斜率因子需超过1.0 × 104每毫克/千克/天。为进一步验证,从美国环保署 IRIS数据库(https://cfpub.epa.gov/ncea/iris/search/index.cfm)中通过勾选“致癌性”和“经口”选项下载了相关数据,并将结果导出至Excel。将数据库中的口服致癌斜率因子与1.3 × 102和1.0 × 104每毫克/千克/天进行比较,以确定哪些化合物超过该因子,从而在暴露量分别为120 μ克和1.5 μ克时理论上可能超过10−5的超额癌症风险。

3. 结果

3.1. CPDB中物质的归类

原始CPDB包含1547种物质的致癌性数据。其中,仅有804种物质在存档的按化学品分类的CPDB摘要表中列出了TD50。这804种物质中有八种被排除,原因如下:它们要么是关注物类别(COC)与其他化合物的混合物(环森素和乙酸甲基偶氮甲醇),要么其化学结构无法确定或存在歧义,导致无法判断其是否属于COC(Clophen A 30;SDZ 200–110;硫酸淀粉;艾尔米龙;酸降解卡拉胶;亚硝基‐2‐氧代丙基乙醇胺;亚硝基‐2,3‐二羟基丙基‐2‐氧代丙基胺)。在剩余的796种物质条目中,有168种为COC,已被排除。在剩下的628种非COC物质条目中,有17个实例中的同一种物质被多次列出,通常是因为纯度不同。我们将这17个条目合并为每种物质一个条目,共得到八个条目。这一做法与Thresher 等人(2019年)所采用的方法一致,即在拉萨致癌性数据库(Lhasa CPDB)中,将同一物质在不同纯度水平下的所有研究列为单一条目。

在剩余的619种物质清单中,420种未列出拉萨TD50值,因此剩下199种非COC物质具有拉萨TD50值(参见瑟舍等人,2019)以了解某些 TD50值未被计算的原因)。这199种非COC物质在结构、用途和存在性方面具有多样性,代表了药品、天然化合物、农药、工业化学品和溶剂。

用于推导TD50值的研究主要为经口途径(83%;3.5%使用肠外暴露途径),实验对象主要为啮齿类动物(95%),暴露持续时间至少为52周(91%)。最常见的受影响器官是肝脏(33%)。20%的研究中观察到多个受影响器官。

3.2. TD50分布的比较

我们将拉萨TD50值分布的分位数与相应子集的原始TD50值分布以及619种物质清单的全部TD50值集合的分布进行比较,以确定是否存在任何差异,特别是在较低数值范围(见 图1)。

结果表明,这些分布在低TD50区域相似,但在较高剂量下出现差异(见表1)。在第75百分位数时,各分布间TD50值的范围为50毫克/千克/天,而在第5百分位数时仅为0.15毫克/千克/天。相对于均值而言,这些范围在第75百分位数时占各分布均值的8.4%,在第5百分位数时占各分布均值的12.7%。

这一观察结果与Thresher 等人(2019年)的发现一致,即拉萨 TD50值与原始TD50值之间的大多数差异出现在较高数值上。无论是与完整的619种非COC分布相比,还是与具有拉萨TD50值的199种非 COC物质子集相比,拉萨TD50值的分位数值均与原始TD50值相似。这些结果表明,在选择拉萨TD50值时,我们并未无意中使TD50分布的低端偏离历史上使用的原始CPDB值。

3.3. 对应于10−5超额癌症风险的剂量

每个拉沙TD50通过除以50,000,线性外推至与超额癌症风险为10−5相对应的剂量。将所得的外推剂量乘以该剂量‐反应关系的研究暴露持续时间,得到对应于超额癌症风险为10−5的累积剂量分布,单位为毫克/千克。再乘以60公斤患者体重,得到总剂量。外推至超额癌症风险为10−5的总剂量的统计摘要见表2。

对于终身植入的单一器械,例如起搏器,假设不确定因子UF为1,并采用完全提取条件,当安全阈值DBT为1.5 μg/天时,AET可计算为1.5 μg/器械,或总计1.5 μg。在199种非COC物质中,仅有两种物质在推算至超额癌症风险为10−5时,其总剂量低于1.5μg(分别为放线菌素D和双(氯甲基)醚)。仅有九种物质在推算至超额癌症风险为10−5时,其总剂量低于120 μg。这些物质列于表3中。超过95%的非COC物质在推算至超额癌症风险为120 μg时,其总剂量大于10−5。

示意图0

分位数 拉萨TD50(n = 199),毫克/千克/天 原始TD50 (n = 199),毫克/千克/天 原始TD50(n = 619),毫克/千克/天
100% 4640 25700 30300
90% 490 702 1100
75% 169 204 219
50% 34.1 33.6 36.1
25% 3.93 4.46 5.06
10% 0.868 1.14 1.04
5% 0.439 0.297 0.447
2.5% 0.0516 0.0774 0.15
最小值 0.00122 0.00111 0.00102

表1 原始CPDB与Lhasa CPDB中非COC类物质TD50值分位数比较

在10⁻⁵时的最小总剂量 − 5超额癌症风险,μg 0.266
在 10 − 5超额癌症风险下的最大总剂量,μg 4,050,000
在 10 − 5超额癌症风险下的均值总剂量,μg 162,000
中位数总剂量在 10 − 5超额癌症风险下为μg 27,100
第5百分位总剂量在 10 − 5超额癌症风险下为μg 325

表2 外推至超额癌症风险为 10 − 5 时总剂量分布的汇总统计。

物质 10−5超额癌症风险下的总剂量,μg
放线菌素D 0.266
双(氯甲基)醚 0.518
苯丁酸氮芥 6.77
美法仑 11.3
六甲基磷酰胺 15.5
5‐氮杂胞苷 74.7
85.6
2,6‐二硝基甲苯 86.5
2‐硝基芴 114

表3 外推至超额癌症风险为10−5时,总剂量小于120 μg的非COC物质列表。

3.4. 与美国环保署IRIS数据库中的口服致癌斜率因子的比较

如第2.4节所述,某种物质要超过一个额外的在AET为10−5克或1.120 μ克时,若要产生5 μ的癌症风险,致癌斜率因子必须大于1.3 × 102或1.0 × 104每毫克/千克/天。美国环保署IRIS数据库包含79种物质的86个经口癌症斜率因子。在这些经口癌症斜率因子中,仅有四个超过1.3 × 102每毫克/千克/天。其中两个为关注物类别(COC)(六氯代二苯并‐p‐二噁英混合物和N‐亚硝基二乙胺)。另一个是双(氯甲基)醚,列于表3中。剩余的一种物质是联苯胺。没有任何经口癌症斜率因子大于1.0 × 104。

4. 讨论

4.1. 大部分化学物质不存在显著的癌症风险

我们假设,在总量低于1.5 μg的情况下,仅有极少数物质会对患者产生毒理学风险,即超额终身癌症风险大于10−5。我们通过将拉萨致癌性数据库(Lhasa CPDB)中非COC物质的TD50值线性外推至超额终身癌症风险为10−5的水平,并根据相应的研究暴露持续时间计算总剂量,来验证这一假设。结果发现,在总剂量低于1.5 μg时,仅有两种非COC物质可能超过该风险水平。此外,我们发现,在总剂量低于120 μg时,仅有另外七种非COC物质超过该风险水平,而我们考察的非COC物质中有超过95%在120 μg时不会超过该风险水平。这些结果表明,AETs在1.5–120 μg/器械范围对应于CPDB中TD50值分布的较低的5%。重要的是,一种先前未知的化学物(无论是否为医疗器械可提取物)其致突变性致癌性强度超过CPDB中已知致癌物的可能性,低于本研究结果所暗示的5%。这是因为并非所有化学物都是致突变性致癌物。保守估计,大约有10%的化学物具有致癌性,无论其是否具有致突变性(冯等,1995)。因此,假设医疗器械可提取物的整体情况与所有化学物整体相似,则任何一种“新”医疗器械可提取物成为强效致突变性致癌物,从而在120 μg剂量下产生高于10−5的风险的概率小于0.5%。

与美国环保署IRIS数据库中的口服致癌斜率因子比较证实了我们的结果。在具有口服致癌斜率因子的79种物质中,没有任何一种的斜率因子足够大,以至于在1.5 μg总剂量下可能产生超过 10−5的额外风险。仅有两种非COC物质——双(氯甲基)醚和联苯胺——其口服斜率因子足够大,以至于在120 μg总剂量下可能产生超过10−5的额外风险。根据基于拉萨TD50值的分析,双(氯甲基)醚和联苯胺相应的总剂量分别约为 0.518 g和 6000 μg。这些结果验证了我们基于致癌强度数据库(CPDB)中TD50值的分析:极少数非COC物质在120 μg总剂量下可能产生超过10−5的额外风险。

4.2. 评估的局限性

我们的结果可能受限于使用Gold CPDB来识别非COC物质以及可获得的拉沙推导出的TD50值。我们选择Gold CPDB是因为它是致突变性致癌物TTC的原始来源,并且具有公开可获取性。我们选择使用拉沙推导的TD50值,是因为他们采用了可重现且透明的方法论,并且数据公开可用。我们知晓目前正在努力创建一个更新的致癌物数据库(欧洲食品安全局科学委员会等,2019)。然而,我们认为当前的评估亟需推动关于AET计算中适当DBT的讨论以达成共识。现有数据库将我们最终的物质列表限制在199种非COC物质。尽管该物质数量相较于其他数据库相对较少,但我们的分析表明,TD50分布的下限与来自Gold CPDB的619种非COC物质的大数据集相似。因此,更多具有拉沙TD50值的非COC物质不太可能显著影响我们的结果。

4.3. 评估的保守性

使用致癌强度数据库(CPDB)基于1.5与120 μg/天来校准AETs是极为保守的,原因如下:
- 无论动物物种、暴露途径(3.5%使用肠外暴露途径)、肿瘤部位或人类相关性如何,均采用最低的拉沙TD50值。不同肿瘤类型的TD50值在不同研究之间以及同一研究内部可能相差一个数量级或更多。例如,尿素烷的拉沙TD50值在不同研究和肿瘤部位之间的范围为0.439至 337毫克/千克/天。
- 对于同一物质的阴性致癌性试验结果被忽略。我们最初的TD50数据来源列出了具有阳性结果的化合物,即使该物质已有阴性结果的报告。
- TD50值通过线性外推法确定与10−5的超额癌症风险水平相当的剂量。从高剂量到低剂量的线性外推被认为是极为保守的(欧洲食品安全局,2005;欧洲食品安全局,世界卫生组织,2016)。
- 致癌强度数据库中的数据可能偏向于过度代表致癌物,尤其是强效致癌物,因为这些物质最有可能被研究其致癌性潜力(冯等,1995;欧洲食品安全局,2012)。
- TD50 分布的数据来源研究中,暴露持续时间至少为26周,约占试验动物寿命的25%(95%的研究使用了小鼠和大鼠)。医疗器械浸出物的临床暴露可能仅占患者寿命的较小比例,因此癌症风险较低。

4.4. 医疗器械可提取物

实际上,将这些发现与医疗器械的化学表征实际关联起来更具意义。然而,目前关于医疗器械可提取物的公开发表数据非常有限。纳皮尔和史密斯(2019)发表了一篇关于潜在医疗器械可提取物的综述,强调了与严重危害相关的物质,例如致癌性(如氯乙烯、丙烯腈、甲醛、环氧乙烷、苯乙烯),但并未提供实际的可提取物数据。根据我们的经验,上述报告中的1 μg 医疗器械可提取物中,被认为具有致癌性或致突变性的物质极少甚至没有。在长期接触类医疗器械中检测出的大约230种有机可提取物(不含寡聚物)中,未发现任何可能具有遗传毒性的致癌物(N. 马尔迪罗西安,个人交流)。延克和卡尔森(2014)报告了来自药品包装、给药/使用以及制造系统中使用的聚合物材料的540多种可提取物,这些系统所用的许多聚合物与医疗器械相同。其中21种可提取物具有Gold CPDB中的TD50值。最低的TD50值是丙烯腈,根据我们的评估,要超过500 μ克总量才会超出 10−5的超额癌症风险,远高于基于120 μ克/天AET所识别出的量。尽管关于医疗器械可提取物的可用数据有限,但似乎Gold CPDB数据库所包含的致癌性物质比医疗器械提取物中预期存在的物质更具致癌性。

4.5. 使用 120 μg/天计算AETs时的注意事项

关于使用 120 μg/天作为DBT来计算AET,已提出若干关注点。这些关注点可分为两类:一类涉及分析不确定性(即检测、识别和定量未知物质的固有不确定性),另一类涉及毒理学不确定性(即暴露量不确定的未知物质可能带来的风险的不确定性)。分析不确定性可通过计算 AET时所用的UF予以考虑。因此,尽管仅基于毒理学考量的AET可能为 120 μg/天,实际AET会更低,以考虑器械的临床使用情况以及分析响应不佳的可能性。如果怀疑某种特定致癌物可能是潜在的可提取物,则建议针对该物质进行靶向分析,而不是依赖于对检测和准确定量能力未知的筛选性化学表征。

毒理学不确定性可进一步分为两类:一是对采用基于TTC的方法计算AET的一般性担忧,二是对计算中所用具体TTC值的关注。使用 TTC来计算AET是TTC用途的合理延伸,其目的是在暴露量较低且毒性数据很少或缺乏的情况下,对物质的风险评估进行筛选和优先排序(欧洲食品安全局科学委员会等,2019)。因此,TTC作为判断何种低暴露水平值得关注的实用工具是合理的。将基于TTC的方法用于筛选性化学表征的AET计算时,主要挑战在于,这样做实际上相当于将TTC应用于结构未知的物质。现有的TTC框架通常从已知结构出发,以确认待评估物质不是排除物质,判断是否存在现有毒性数据,并在必要时确定是否存在合适的结构类似物。后两项判断旨在确保在已有足够毒性数据时进行物质特异性风险评估。当基于TTC的AET以下可能存在排除物质时,这一问题更令人关注,因为其中一些物质可能在低于TTC水平时仍构成显著风险,或因在推导TTC所用的毒性数据库中代表性不足而带来未知风险。这一可能性可通过有关器械材料和工艺的额外信息,或通过单独的物质特异性化学分析加以解决。欧洲食品安全局最近推荐了针对未完全明确的混合物采用基于TTC的方法(欧洲食品安全局科学委员会等,2019)。

其他毒理学不确定性集中在使用由终生TTC(ICH, 2017)部分通过应用Haber’s规则推导出的120 μg/天的DBT是否具有足够的保护性。基于癌变的随机性质,Haber’s规则在致突变性致癌物中的应用被普遍接受,其中肿瘤发生的概率被认为与靶部位的分子总数成正比,而分子总数又与总剂量成正比(Geraets 等,2016;Felter 等,2011;美国环保局,2005;Bos 等,2004;美国环保局,1986)。实验和理论研究表明,应应用剂量率修正因子(DRCF)来考虑某些化学物质在低于终生暴露情况下的癌症风险可能高于仅依据Haber’s规则预测的风险(Felter 等,2011)。推荐的剂量率修正因子(DRCF)范围最高可达 10倍(Geraets 等,2016;Felter 等,2011;Bos 等,2004)。ISO TS 21726中规定的120 μg/天的数值以及 ICH M7指南中推导出的数值包含了额外的300倍安全系数,因此符合该建议。对于包含特定人群的TTC应用,人们普遍存在担忧由于早产新生儿、新生儿和婴儿在这些生命阶段生长发育迅速(欧洲食品安全局科学委员会等,2019;Felter 等,2011),针对用于这些人群的器械的化学表征,应考虑调整为更敏感的AET。

使用 120 μg/天的DBT也与基于结构的克雷默分类法得出的非致癌性TTC一致(克雷默等,1978;芒罗等,1996;欧洲食品安全局科学委员会等,2019)。克雷默类别阈值通常用于评估非遗传毒性物质。采用第1.3节中所述的相同假设(即完全提取条件、使用一个器械以及 UF为= 1),当DBT为120 μg/天时,所得AET要求报告任何超过120 μg的可提取物量。克雷默III类化合物(最低阈值)的90 μg/天阈值所需的可提取物总量应为 90 μg乘以慢性暴露持续时间,该时间至少可能为180天(考虑到90天暴露被视为亚慢性)。因此,120 μg的总量相当于在90μg/天水平下约1.3天的暴露量,远低于慢性暴露水平。因此,在计算 AET时使用120 μg/天作为DBT,对于非遗传毒性物质(如克雷默III类化合物)是充分保护性的。

另一个担忧是,120 μg/天的安全阈值可能无法充分保护某些释放动力学情况,例如器械发生机械故障后的情况。在这种情况下,可提取物的突释可能在植入后的数周或数年内发生。然而,在这些情况下,安全阈值的保护作用与突释发生在植入后立即发生时相同。关键的暴露考量因素是可提取物的总量。只要总量不超过120 μg,则最高每日暴露量将限制在120 μg/天。

5. 结论

我们的结果表明,CPDB中95%的非COC物质在含量高于120 μg时不会产生毒理学风险。如第3.1节所述,一种此前未知的医疗器械可提取物在含量低于120 μg时产生毒理学风险的概率小于0.5%,并且由于我们评估固有的保守性,该概率可能更低。因此,我们得出结论:对于具有有限且长期的患者接触的医疗器械,采用基于120 μg/天DBT计算的 AET,并结合完全提取,可为医疗器械的化学表征提供具有保护性和实用性的灵敏度。

内容概要:本文详细介绍了一个基于Python实现的锂电池剩余寿命(RUL)预测项目,采用Transformer-LSTM混合深度学习模型,结合GUI界面实现智能化预测与可视化分析。项目涵盖从数据生成、特征工程、模型构建(Transformer自注意力机制与LSTM时序建模融合)、训练优化、性能评估到实际部署的全流程。通过滑动窗口采样、数据归一化、多维度评估指标(MSE、MAE、R²、RMSE、MAPE)及残差分析,确保模型高精度与鲁棒性。同时集成注意力权重与LSTM隐状态可视化功能,提升模型可解释性,并设计了完整的GUI交互系统,支持数据加载、模型热插拔推理与预测结果动态展示。; 适合人群:具备一定Python编程基础和深度学习知识,熟悉PyTorch框架的数据科学从业者、研究生及从事新能源、智能制造、电池管理系统开发的工程师。; 使用场景及目标:①应用于新能源汽车、储能电站、消费电子等领域的电池健康管理;②实现锂电池剩余寿命的高精度动态预测,支持智能运维与故障预警;③为科研人员提供可复现、可扩展的深度学习时序建模实例,推动电池寿命预测技术的工程化落地。; 阅读建议:建议读者结合代码与文档逐步实践,重点关注数据预处理、模型结构设计与GUI集成部分,尝试在本地环境中运行并调试程序,深入理解Transformer与LSTM协同工作机制,同时可扩展多模态输入或轻量化部署以适应更多应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值