android
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
23、KMANB算法在物联网传感器数据异常检测中的应用与优化
本文探讨了KMANB算法在物联网传感器数据异常检测中的应用与优化。KMANB结合K-Means聚类和Naive Bayes分类器,展现出较高的准确率、精确率和召回率(APR),具有良好的可扩展性和灵活性。尽管其训练和测试时间相对较慢,但通过去除最高相关特征等优化方法,可在保持高准确性的同时提升运行速度。实验结果表明,该算法在多种物联网设备上表现稳定,具备广泛的应用潜力。未来研究方向包括进一步优化算法效率、扩大应用场景及结合其他技术提升检测性能。原创 2025-10-11 02:03:45 · 27 阅读 · 0 评论 -
22、利用K-Means聚类和朴素贝叶斯进行物联网传感器数据异常检测
本文提出了一种结合K-Means聚类与Adaboosted朴素贝叶斯的混合机器学习算法KMANB,用于物联网传感器数据的异常检测。该算法通过数据预处理、聚类增强和分类优化三个阶段,提升了检测准确性、可扩展性与灵活性。实验基于ToN_IoT数据集,在多种物联网设备上验证了KMANB在准确性(APR分数高达0.99)、测试速度、大数据集适应性及跨设备性能方面的优势,结果表明其优于传统SML算法,是物联网安全中高效的异常检测解决方案。原创 2025-10-10 12:13:39 · 39 阅读 · 0 评论 -
21、利用K-Means聚类和朴素贝叶斯的机器学习方法
本文探讨了K-means聚类与朴素贝叶斯分类器结合的混合机器学习方法,涵盖其在智能空调监控、图像分类、文本文档分类、员工绩效预测及异常检测等多个领域的应用。文章详细介绍了随机森林、无监督学习和划分聚类的基本原理,重点分析了K-means聚类算法的操作步骤、优势与挑战,并展示了多种混合模型的实际效果。通过流程图和表格形式总结了各类应用场景的技术路径与结果,最后提出了数据预处理、簇数选择、算法改进等优化策略,为提升模型性能提供了实用建议。原创 2025-10-09 09:43:17 · 41 阅读 · 0 评论 -
20、利用K-Means聚类和朴素贝叶斯进行物联网异常检测
本文提出了一种结合k-均值聚类和朴素贝叶斯的混合机器学习算法,用于物联网传感器数据中的异常检测。通过利用无监督与监督学习的优势,该算法在准确性、精度、召回率和可扩展性方面均优于传统的监督学习方法(如KNN、朴素贝叶斯和随机森林)。实验结果表明,该方法在多种物联网设备数据集上表现优异,尤其适用于大规模、复杂环境下的实时异常检测,为提升物联网安全提供了有效解决方案。原创 2025-10-08 10:04:04 · 45 阅读 · 0 评论 -
19、轻量级区块链信任管理与物联网异常检测算法
本文提出了一种轻量级区块链信任管理框架与结合无监督和有监督学习的物联网异常检测算法。该框架通过基于声誉分数和休眠时间的矿工选择机制,结合智能合约实现高效、公平的访问控制,在抵御Sybil和DDoS攻击方面表现出优越性能,生成新块平均时间分别为1274毫秒和1196毫秒,显著优于现有方案。异常检测算法采用k-means聚类进行初步分类,再利用AdaBoosted Naïve Bayes提升识别准确性,正确识别率高达90%至100%,具备高精度、灵活性和可扩展性。两者结合为物联网系统提供了全面的安全保障,未来可原创 2025-10-07 12:02:15 · 36 阅读 · 0 评论 -
18、轻量级区块链信任管理框架分析与实验验证
本文提出了一种轻量级区块链信任管理框架,专为物联网环境设计,通过‘燃烧代币’验证公钥合法性,结合基于声誉的共识机制和交易流与数据流分离架构,在有效性、一致性、活性、可扩展性、公平性和安全性方面实现优化。实验表明,该框架在延迟时间、验证效率和每秒交易数(TPS)上均优于传统方法和Ripple等基准系统,具备抵御Sybil和DDoS攻击的能力。未来可应用于智能家居、工业物联网,并有望与AI和大数据技术融合,支持更大规模节点部署。原创 2025-10-06 14:49:02 · 48 阅读 · 0 评论 -
17、轻量级区块链信任管理框架解析
本文提出了一种适用于物联网环境的轻量级区块链信任管理框架,通过智能合约系统、基于声誉的共识算法和验证机制,有效解决了传统区块链在延迟、安全性和可扩展性方面的挑战。框架采用交易流与数据流分离降低开销,利用多签名、非对称加密等技术保障交易安全,并通过声誉评分动态评估节点行为,激励诚实参与。该方案在供应链管理和智能家居等场景中具有广泛应用前景,同时为未来与人工智能、大数据及跨链技术融合提供了可能。原创 2025-10-05 14:09:45 · 27 阅读 · 0 评论 -
16、区块链技术在物联网访问控制与信任管理中的应用解析
本文探讨了区块链技术在物联网访问控制与信任管理中的应用。分析了传统访问控制模型的局限性,阐述了区块链的去中心化、不可变性、不可抵赖性等特性及其数据结构与共识机制。文章比较了PoW、PoS、DPoS和PBFT等主流共识算法,并讨论了区块链与访问控制、信任管理的集成方案。同时,介绍了基于信任的共识机制及区块链面临的主要安全攻击类型与防御措施,指出区块链在物联网中具备巨大潜力但仍需应对性能与安全挑战。原创 2025-10-04 10:30:55 · 26 阅读 · 0 评论 -
15、基于轻量级区块链的物联网访问控制信任管理框架
本文提出了一种基于轻量级区块链的物联网访问控制信任管理框架,旨在解决传统集中式访问控制在可扩展性、单点故障和安全性方面的局限性。框架结合P2P网络、智能合约与声誉评估机制,设计了适用于资源受限设备的声誉基于共识算法和验证机制,在降低计算开销的同时保障低延迟与高安全性。通过实验评估,该框架在延迟时间、TPS和处理效率方面优于现有方法,并具备抵御女巫攻击和双重花费攻击的能力,为物联网环境提供了高效、可信的安全解决方案。原创 2025-10-03 11:01:50 · 28 阅读 · 0 评论 -
14、5G 物联网网络 DDoS 威胁与解决方案
本文探讨了5G物联网网络中分布式拒绝服务(DDoS)攻击的威胁及其应对方案。重点分析了深度学习在DDoS检测中的应用,包括CNN、自动编码器、DBN和RNN等模型的优势与挑战。同时,介绍了IP回溯、数据包标记和混合缓解方案的技术细节,并针对5G/IoT环境提出了预防、检测和缓解的多层次安全策略。文章还讨论了实际部署中的成本、可扩展性和实时性因素,展望了融合SDN、NFV与人工智能的智能化、标准化未来发展方向,旨在为构建高效、轻量级的安全防御体系提供参考。原创 2025-10-02 11:34:06 · 35 阅读 · 0 评论 -
13、5G 物联网网络中的 DDoS 威胁与解决方案
本文探讨了5G物联网网络中日益严重的分布式拒绝服务(DDoS)攻击威胁,分析了DDoS攻击的分类,包括带宽耗尽和资源耗尽攻击,并系统梳理了攻击预防、检测与缓解三大防御机制。文章进一步介绍了基于软件定义网络(SDN)、边缘计算、区块链以及人工智能和机器学习等前沿技术在5G/IoT环境下的安全解决方案,强调需采用多层次、智能化的综合防护策略以应对不断演化的DDoS威胁,确保未来网络的安全与可靠。原创 2025-10-01 15:26:41 · 39 阅读 · 0 评论 -
12、能源交易与通信系统的现状及展望
本文综述了当前能源交易与通信系统的研究现状,重点分析了区块链技术在点对点及大电网能源交易中的应用优势与挑战,探讨了基于云的通信系统在灵活性、成本效益和可扩展性方面的潜力及其面临的服务与体验质量难题。文章还讨论了安全与隐私保护的关键技术如零知识证明、同态加密等,并指出网络拥塞、安全漏洞和兼容性是通信技术的主要挑战。最后,展望了能源交易系统向智能化、去中心化、绿色化和融合化发展的趋势,强调未来需加强大电网交易研究、云系统优化及跨领域技术融合。原创 2025-09-30 13:00:58 · 23 阅读 · 0 评论 -
11、电力交易通信技术与云安全性能分析
本文探讨了电力交易中通信技术与云安全性能的关键问题,重点分析了统一通信(UC)在云端部署的可行性,特别是针对交易通信系统的安全性、性能和服务质量挑战。文章综述了当前云平台(如OpenStack和VMware ESXi)的应用现状、VoIP与视频会议的资源管理研究,并强调用户体验质量(QoE)评估的重要性。同时,提出了构建评估模型、优化资源管理、加强数据保护等未来研究方向与改进策略,旨在推动安全、高效、合规的云基电力交易通信系统发展。原创 2025-09-29 12:17:22 · 40 阅读 · 0 评论 -
10、区块链技术在能源交易、隐私保护及审计服务中的应用
本文探讨了区块链技术在能源交易、隐私保护和审计服务中的应用。分析了区块链如何通过混合协议与加密技术提升交易匿名性与安全性,介绍了其在点对点能源交易、微电网管理及可再生能源消纳中的研究案例。同时,阐述了区块链结合智能合约在审计流程自动化、数据可信存储方面的潜力,并讨论了当前面临的性能、标准、监管等挑战。最后展望了区块链与物联网、人工智能融合的发展趋势,提出企业、政府和社会层面的推进建议。原创 2025-09-28 11:57:51 · 38 阅读 · 0 评论 -
8、工业物联网系统中的漏洞管理:原理与实践
本文系统探讨了工业物联网(IIoT)环境下的漏洞管理全过程,涵盖漏洞识别、分析、优先级排序、修复、验证与监控等关键环节。文章对比了CVSS和WIVSS等评分系统及基于图论、博弈论和机器学习的优先级排序方法,分析了现有技术在领域特征、补丁依赖、多攻击者场景和跨系统攻击检测方面的局限性。同时提出了实用建议与未来发展方向,包括智能化管理、多维度防护、实时响应机制和行业标准建设,旨在提升IIoT系统的整体安全性与稳定性。原创 2025-09-26 11:47:09 · 33 阅读 · 0 评论 -
7、基于工业物联网系统的漏洞管理:是什么、为什么以及如何做
本文探讨了基于工业物联网(IIoT)的SCADA系统在面临日益增长的网络攻击威胁下的漏洞管理问题。通过分析真实攻击案例,阐述了漏洞管理在保障关键基础设施安全中的重要性。文章详细介绍了漏洞管理的五个核心阶段:漏洞发现、分析、优先级排序、修复以及验证与监控,并讨论了在IIoT环境中实施VM所面临的系统可用性、基础设施融合等挑战。同时,总结了当前研究在多主机多阶段攻击检测、用户友好工具设计等方面的不足,提出了未来研究方向,旨在提升工业系统的整体安全性与自动化管理水平。原创 2025-09-25 09:58:07 · 28 阅读 · 0 评论 -
6、工业控制系统的系统识别方法
本文综述了工业控制系统(ICS)中的系统识别方法,从模式识别、系统架构、设计和自动化四个角度分析了不同模型发现技术的特点与挑战。重点探讨了模糊C均值聚类和基于窗口的时序数据处理方法,讨论了时间驱动、事件驱动及混合系统识别在不同ICS层次的应用,并深入剖析了多阶段系统中共享资源建模、批处理视角捕捉以及灵活自动化下人类决策建模等关键难题。文章最后总结了当前系统识别领域面临的三大开放挑战:准确识别混合系统的防护条件、纳入操作员行为的灵活自动化建模,以及具有共享资源的多阶段混合系统建模。原创 2025-09-24 16:51:57 · 46 阅读 · 0 评论 -
5、工业控制系统的系统识别方法解析
本文深入探讨了工业控制系统(ICS)的模型发现方法,涵盖系统交互配置、自动化策略及系统动力学等多个维度。重点分析了时间驱动、事件驱动和混合系统识别三类方法的原理、优缺点及适用场景,并对模式识别技术与未来研究方向进行了总结。通过实际案例展示了混合自动机模型在复杂ICS中的应用,强调了结合多种方法以提升模型准确性与实用性的必要性,为ICS建模与优化提供了系统性参考。原创 2025-09-23 16:11:53 · 26 阅读 · 0 评论 -
4、网络安全与工业控制系统建模:挑战与机遇
本文探讨了网络威胁情报(CTI)共享与工业控制系统(ICS)系统识别的挑战与机遇。在CTI共享方面,分析了当前面临的生产者-消费者失衡、法律限制、数据有效性及隐私信任等问题,并指出基于区块链的解决方案在访问控制、声誉系统和激励机制等方面的潜力。在ICS建模方面,从系统动态、架构和设计实现三个维度对ICS进行分类,综述了连续、离散和混合动态系统的识别技术及其应用。最后提出了未来研究方向:深化区块链在CTI中的应用,结合AI提升情报智能性,以及发展针对复杂混合动态ICS的先进建模方法,以推动网络安全与工业自动化原创 2025-09-22 15:06:41 · 33 阅读 · 0 评论 -
3、区块链在网络威胁情报共享中的应用探索
本文探讨了区块链技术在网络威胁情报(CTI)共享中的应用,分析了CTI共享流程中的激励机制、押金机制、声誉系统、访问控制和情报挖掘等关键组成部分。文章总结了当前面临的挑战,如验证难题、隐私与信任平衡问题,并指出了基于区块链的解决方案所带来的机遇。通过结合智能合约、去中心化架构和加密技术,区块链为CTI共享提供了安全、透明且可信赖的环境。未来研究方向包括改进验证方法、优化隐私保护机制以及完善激励设计,以推动更高效、公平的威胁情报共享生态发展。原创 2025-09-21 15:58:20 · 39 阅读 · 0 评论 -
2、基于区块链的CTI共享:挑战与机遇
本文探讨了基于区块链的网络威胁情报(CTI)共享框架,分析了传统共享模式面临的生产者-消费者失衡、法律合规、数据有效性、情报分类及隐私信任等挑战。提出利用区块链技术构建去中心化、可信的共享体系,并重点介绍了特许权方案和消费费用方案两种激励机制,以促进高质量CTI的共享。同时讨论了实施中的验证公正性、费用合理性与隐私平衡问题,并展望了跨行业共享、AI融合及更完善激励机制的未来发展方向,为构建高效安全的CTI生态提供思路。原创 2025-09-20 09:25:49 · 31 阅读 · 0 评论 -
1、区块链在网络威胁情报共享中的挑战与机遇
随着网络威胁日益复杂,网络威胁情报(CTI)成为关键的安全防护手段。然而,传统CTI共享面临生产者-消费者失衡、数据有效性、法律监管和敏感信息共享等挑战。区块链技术凭借其去中心化、不可变性、可审计性和智能合约等特性,为构建可信、高效的CTI共享平台提供了新的解决方案。本文探讨了基于区块链的CTI共享模型,分析了其在解决当前挑战中的机遇,并展望了未来研究方向,包括优化共识机制、加强隐私保护和制定行业标准。原创 2025-09-19 13:47:58 · 37 阅读 · 0 评论
分享